Streaking of photoelectrons has long been used for the temporal characterization of attosecond extreme ultraviolet pulses. When the time-resolved photoelectrons originate from a coherent superposition of electronic states, they carry an additional phase information, which can be retrieved by the streaking technique. In this contribution we extend the streaking formalism to include coupled electron and nuclear dynamics in molecules as well as initial coherences and demonstrate how it offers a novel tool to monitor non-adiabatic dynamics as it occurs in the vicinity of conical intersections and avoided crossings. Streaking can enhance the time resolution and provide direct signatures of electronic coherences, which affect many primary photochemical and biological events.