Do you want to publish a course? Click here

NN-grams: Unifying neural network and n-gram language models for Speech Recognition

228   0   0.0 ( 0 )
 Added by Shankar Kumar
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

We present NN-grams, a novel, hybrid language model integrating n-grams and neural networks (NN) for speech recognition. The model takes as input both word histories as well as n-gram counts. Thus, it combines the memorization capacity and scalability of an n-gram model with the generalization ability of neural networks. We report experiments where the model is trained on 26B words. NN-grams are efficient at run-time since they do not include an output soft-max layer. The model is trained using noise contrastive estimation (NCE), an approach that transforms the estimation problem of neural networks into one of binary classification between data samples and noise samples. We present results with noise samples derived from either an n-gram distribution or from speech recognition lattices. NN-grams outperforms an n-gram model on an Italian speech recognition dictation task.



rate research

Read More

As voice assistants become more ubiquitous, they are increasingly expected to support and perform well on a wide variety of use-cases across different domains. We present a domain-aware rescoring framework suitable for achieving domain-adaptation during second-pass rescoring in production settings. In our framework, we fine-tune a domain-general neural language model on several domains, and use an LSTM-based domain classification model to select the appropriate domain-adapted model to use for second-pass rescoring. This domain-aware rescoring improves the word error rate by up to 2.4% and slot word error rate by up to 4.1% on three individual domains -- shopping, navigation, and music -- compared to domain general rescoring. These improvements are obtained while maintaining accuracy for the general use case.
This paper presents an efficient algorithm for n-gram language model adaptation under the minimum discrimination information (MDI) principle, where an out-of-domain language model is adapted to satisfy the constraints of marginal probabilities of the in-domain data. The challenge for MDI language model adaptation is its computational complexity. By taking advantage of the backoff structure of n-gram model and the idea of hierarchical training method, originally proposed for maximum entropy (ME) language models, we show that MDI adaptation can be computed in linear-time complexity to the inputs in each iteration. The complexity remains the same as ME models, although MDI is more general than ME. This makes MDI adaptation practical for large corpus and vocabulary. Experimental results confirm the scalability of our algorithm on very large datasets, while MDI adaptation gets slightly worse perplexity but better word error rate results compared to simple linear interpolation.
This paper presents methods to accelerate recurrent neural network based language models (RNNLMs) for online speech recognition systems. Firstly, a lossy compression of the past hidden layer outputs (history vector) with caching is introduced in order to reduce the number of LM queries. Next, RNNLM computations are deployed in a CPU-GPU hybrid manner, which computes each layer of the model on a more advantageous platform. The added overhead by data exchanges between CPU and GPU is compensated through a frame-wise batching strategy. The performance of the proposed methods evaluated on LibriSpeech test sets indicates that the reduction in history vector precision improves the average recognition speed by 1.23 times with minimum degradation in accuracy. On the other hand, the CPU-GPU hybrid parallelization enables RNNLM based real-time recognition with a four times improvement in speed.
Although n-gram language models (LMs) have been outperformed by the state-of-the-art neural LMs, they are still widely used in speech recognition due to its high efficiency in inference. In this paper, we demonstrate that n-gram LM can be improved by neural LMs through a text generation based data augmentation method. In contrast to previous approaches, we employ a large-scale general domain pre-training followed by in-domain fine-tuning strategy to construct deep Transformer based neural LMs. Large amount of in-domain text data is generated with the well trained deep Transformer to construct new n-gram LMs, which are then interpolated with baseline n-gram systems. Empirical studies on different speech recognition tasks show that the proposed approach can effectively improve recognition accuracy. In particular, our proposed approach brings significant relative word error rate reduction up to 6.0% for domains with limited in-domain data.
Language models (LMs) pre-trained on massive amounts of text, in particular bidirectional encoder representations from Transformers (BERT), generative pre-training (GPT), and GPT-2, have become a key technology for many natural language processing tasks. In this paper, we present results using fine-tuned GPT, GPT-2, and their combination for automatic speech recognition (ASR). Unlike unidirectional LM GPT and GPT-2, BERT is bidirectional whose direct product of the output probabilities is no longer a valid language prior probability. A conversion method is proposed to compute the correct language prior probability based on bidirectional LM outputs in a mathematically exact way. Experimental results on the widely used AMI and Switchboard ASR tasks showed that the combination of the fine-tuned GPT and GPT-2 outperformed the combination of three neural LMs with different architectures trained from scratch on the in-domain text by up to a 12% relative word error rate reduction (WERR). Furthermore, the proposed conversion for language prior probabilities enables BERT to receive an extra 3% relative WERR, and the combination of BERT, GPT and GPT-2 results in further improvements.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا