No Arabic abstract
We investigate models of the Milky Way disc taking into account simultaneously the bar and a two-armed quasi-static spiral pattern. Away from major resonance overlaps, the mean stellar radial motions in the plane are essentially a linear superposition of the isolated effects of the bar and spirals. Thus, provided the bar is strong enough, even in the presence of spiral arms, these mean radial motions are predominantly affected by the Galactic bar for large scale velocity fluctuations. This is evident when comparing the peculiar line-of-sight velocity power spectrum of our coupled models with bar-only models. However, we show how forthcoming spectroscopic surveys could disentangle bar-only non-axisymmetric models of the Galaxy from models in which spiral arms have a significant amplitude. We also point out that overlaps of low-order resonances are sufficient to enhance stellar churning within the disc, even when the spirals amplitude is kept constant. Nevertheless, for churning to be truly non-local, stronger or (more likely) transient amplitudes would be needed: otherwise the disc is actually mostly unaffected by churning in the present models. Finally, regarding vertical breathing modes, the combined effect of the bar and spirals on vertical motions is a clear non-linear superposition of the isolated effects of both components, significantly superseding the linear superposition of modes produced by each perturber separately, thereby providing an additional effect to consider when analysing the observed breathing mode of the Galactic disc in the extended Solar neighbourhood.
Bars are common galactic structures in the local universe that play an important role in the secular evolution of galaxies, including the Milky Way. In particular, the velocity distribution of individual stars in our galaxy is useful to shed light on stellar dynamics, and provides information complementary to that inferred from the integrated light of external galaxies. However, since a wide variety of models reproduce the distribution of velocity and the velocity dispersion observed in the Milky Way, we look for signatures of the bar on higher-order moments of the line-of-sight velocity ($V_{los}$) distribution. We make use of two different numerical simulations --one that has developed a bar and one that remains nearly axisymmetric-- to compare them with observations in the latest APOGEE data release (SDSS DR14). This comparison reveals three interesting structures that support the notion that the Milky Way is a barred galaxy. A high skewness region found at positive longitudes constrains the orientation angle of the bar, and is incompatible with the orientation of the bar at $ell=0^circ$ proposed in previous studies. We also analyse the $V_{los}$ distributions in three regions, and introduce the Hellinger distance to quantify the differences among them. Our results show a strong non-Gaussian distribution both in the data and in the barred model, confirming the qualitative conclusions drawn from the velocity maps. In contrast to earlier work, we conclude it is possible to infer the presence of the bar from the kurtosis distribution.
The Milky Way is a spiral galaxy with the Schechter characteristic luminosity $L_*$, thus an important anchor point of the Hubble sequence of all spiral galaxies. Yet the true appearance of the Milky Way has remained elusive for centuries. We review the current best understanding of the structure and kinematics of our home galaxy, and present an updated scientifically accurate visualization of the Milky Way structure with almost all components of the spiral arms, along with the COBE image in the solar perspective. The Milky Way contains a strong bar, four major spiral arms, and an additional arm segment (the Local arm) that may be longer than previously thought. The Galactic boxy bulge that we observe is mostly the peanut-shaped central bar viewed nearly end-on with a bar angle of 25-30 degrees from the Sun-Galactic center line. The bar transitions smoothly from a central peanut-shaped structure to an extended thin part that ends around R ~ 5 kpc. The Galactic bulge/bar contains ~ 30-40% of the total stellar mass in the Galaxy. Dynamical modelling of both the stellar and gas kinematics yields a bar pattern rotation speed of ~ 35-40 km/s/kpc, corresponding to a bar rotation period of ~ 160-180 Myr. From a galaxy formation point of view, our Milky Way is probably a pure-disk galaxy with little room for a significant merger-made, classical spheroidal bulge, and we give a number of reasons why this is the case.
We present a kinematical study of the nearly edge-on galaxy ESO 379-G006 that shows the existence of extraplanar ionized gas. With Fabry-Perot spectroscopy at H-alpha, we study the kinematics of ESO 379-G006 using velocity maps and position-velocity diagrams parallel to the major and to the minor axis of the galaxy. We build the rotation curve of the disk and discuss the role of projection effects due to the fact of viewing this galaxy nearly edge-on. The twisting of the isovelocities in the radial velocity field of the disk of ESO 379-G006 as well as the kinematic asymmetries found in some position-velocity diagrams parallel to the minor axis of the galaxy suggest the existence of deviations to circular motions in the disk that can be modeled and explained with the inclusion of a radial inflow probably generated by a bar or by spiral arms. We succeeded in detecting extraplanar Diffuse Ionized Gas in this galaxy. At the same time, from the analysis of position-velocity diagrams, we found some evidence that the extraplanar gas could lag in rotation velocity with respect to the midplane rotation.
We use the Fundamental Plane of Elliptical Galaxies to constrain the so-called Hybrid Gravity, a modified theory of gravity where General Relativity is improved by further degrees of freedom of metric-affine Palatini formalism of $f(cal R)$ gravity. Because the Fundamental Plane is connected to the global properties of elliptical galaxies, it is possible to obtain observational constraints on the parameters of Hybrid Gravity in the weak field limit. We analyze also the velocity distribution of elliptical galaxies comparing our theoretical results in the case of Hybrid Gravity with astronomical data for elliptical galaxies. In this way, we are able to constrain the Hybrid Gravity parameters $m_phi$ and $phi_0$. We show that the Fundamental Plane, i.e. $v_c/sigma$ relations, can be used as a standard tool to probe different theories of gravity in the weak field limit. We conclude that Hybrid Gravity is able to explain elliptical galaxies with different stellar kinematics without the dark matter hypothesis.
In order to minimize environmental effects and gain an insight into the internal mechanisms that shape the properties of the early-type dwarf systems, we study one of the few isolated dwarf spheroidal galaxies (dSphs) of the Local Group (LG): Cetus. We obtained VLT/FORS2 spectra ($Rsim2600$) in the region of the nIR CaII triplet lines for 80 candidate red giant branch stars. The analysis yielded line-of-sight velocities and metallicities ([Fe/H]) for 54 bona fide member stars. The kinematic analysis shows that Cetus is a mainly pressure-supported ($sigma_v = 11.0_{-1.3}^{+1.6}$ km/s), dark-matter-dominated system ($M_{1/2}/L_V = 23.9_{-8.9}^{+9.7} M_odot/L_odot$) with no significant signs of internal rotation. We find Cetus to be a metal-poor system with a significant [Fe/H] spread (median [Fe/H] = -1.71 dex, median-absolute-deviation = 0.49 dex), as expected for its stellar mass. We report the presence of a mild metallicity gradient compatible with those found in other dSphs of the same luminosity; we trace the presence of a stellar population gradient also in the spatial distribution of stars in different evolutionary phases in ancillary SuprimeCam photometric data. There are tentative indications of two chemo-kinematically distinct sub-populations, with the more metal-poor stars showing a hotter kinematics than the metal-richer ones. Furthermore, the photometric dataset reveals the presence of a foreground population that most likely belongs to the Sagittarius stream. This study represents a first comprehensive analysis of Cetus chemo-kinematic properties. Our results add Cetus to the growing scatter in stellar-dark matter halo properties in low-mass galactic systems. The presence of a metallicity gradient akin to those found in similar systems inhabiting different environments may hint at metallicity gradients in LG early-type dwarfs being driven by internal mechanisms.