No Arabic abstract
Motivated by recent experiment, we consider charging of a nanowire which is proximitized by a superconductor and connected to a normal-state lead by a single-channel junction. The charge $Q$ of the nanowire is controlled by gate voltage $e{cal N}_g/C$. A finite conductance of the contact allows for quantum charge fluctuations, making the function $Q(mathcal{N}_g)$ continuous. It depends on the relation between the superconducting gap $Delta$ and the effective charging energy $E^*_C$. The latter is determined by the junction conductance, in addition to the geometrical capacitance of the proximitized nanowire. We investigate $Q(mathcal{N}_g)$ at zero magnetic field $B$, and at fields exceeding the critical value $B_c$ corresponding to the topological phase transition. Unlike the case of $Delta = 0$, the function $Q(mathcal{N}_g)$ is analytic even in the limit of negligible level spacing in the nanowire. At $B=0$ and $Delta>E^*_C$, the maxima of $dQ/dmathcal{N}_g$ are smeared by $2e$-fluctuations described by a single-channel charge Kondo physics, while the $B=0$, $Delta<E^*_C$ case is described by a crossover between the Kondo and mixed-valence regimes of the Anderson impurity model. In the topological phase, $Q(mathcal{N}_g)$ is analytic function of the gate voltage with $e$-periodic steps. In the weak tunneling limit, $dQ/dmathcal{N}_g$ has peaks corresponding to Breit-Wigner resonances, whereas in the strong tunneling limit (i.e., small reflection amplitude $r$ ) these resonances are broadened, and $dQ/dmathcal{N}_g-e propto rcos(2pi mathcal{N}_g)$.
We measure the charge periodicity of Coulomb blockade conductance oscillations of a hybrid InSb-Al island as a function of gate voltage and parallel magnetic field. The periodicity changes from $2e$ to $1e$ at a gate-dependent value of the magnetic field, $B^*$, decreasing from a high to a low limit upon increasing the gate voltage. In the gate voltage region between the two limits, which our numerical simulations indicate to be the most promising for locating Majorana zero modes, we observe correlated oscillations of peak spacings and heights. For positive gate voltages, the $2e$-$1e$ transition with low $B^*$ is due to the presence of non-topological states whose energy quickly disperses below the charging energy due to the orbital effect of the magnetic field. Our measurements demonstrate the importance of a careful exploration of the entire available phase space of a proximitized nanowire as a prerequisite to define future topological qubits.
Quasiparticle excitations can compromise the performance of superconducting devices, causing high frequency dissipation, decoherence in Josephson qubits, and braiding errors in proposed Majorana-based topological quantum computers. Quasiparticle dynamics have been studied in detail in metallic superconductors but remain relatively unexplored in semiconductor-superconductor structures, which are now being intensely pursued in the context of topological superconductivity. To this end, we introduce a new physical system comprised of a gate-confined semiconductor nanowire with an epitaxially grown superconductor layer, yielding an isolated, proximitized nanowire segment. We identify Andreev-like bound states in the semiconductor via bias spectroscopy, determine the characteristic temperatures and magnetic fields for quasiparticle excitations, and extract a parity lifetime (poisoning time) of the bound state in the semiconductor exceeding 10 ms.
A linear triple quantum dot (TQD) integrated with a quantum dot (QD) charge sensor is realized. The TQD and the charge sensor are built from two adjacent InAs nanowires by fine finger gate technique. The charge state configurations of the nanowire TQD are studied by measurements of the direct transport signals of the TQD and by detection of the charge state transitions in the TQD via the nanowire QD sensor. Excellent agreements in the charge stability diagrams of the TQD obtained by the direct transport measurements and by the charge-state transition detection measurements are achieved. It is shown that the charge stability diagrams are featured by three groups of charge state transition lines of different slopes, corresponding to the changes in the electron occupation numbers of the three individual QDs in the TQD. It is also shown that the integrated nanowire QD sensor is highly sensitive and can detect the charge state transitions in the cases where the direct transport signals of the TQD are too weak to be measurable. Tuning to a regime, where all the three QDs in the TQD are close to be on resonance with the Fermi level of the source and drain reservoirs and co-existence of triple and quadruple points becomes possible, has also been demonstrated with the help of the charge sensor in the region where the direct transport signals of the TQD are hardly visible.
We use a nanowire quantum dot to probe high-frequency current fluctuations in a nearby quantum point contact. The fluctuations drive charge transitions in the quantum dot, which are measured in real-time with single-electron detection techniques. The quantum point contact (GaAs) and the quantum dot (InAs) are fabricated in different material systems, which indicates that the interactions are mediated by photons rather than phonons. The large energy scales of the nanowire quantum dot allow radiation detection in the long-wavelength infrared regime.
In 1909, Millikan showed that the charge of electrically isolated systems is quantized in units of the elementary electron charge e. Today, the persistence of charge quantization in small, weakly connected conductors allows for circuits where single electrons are manipulated, with applications in e.g. metrology, detectors and thermometry. However, quantum fluctuations progressively reduce the discreteness of charge as the connection strength is increased. Here we report on the full quantum control and characterization of charge quantization. By using semiconductor-based tunable elemental conduction channels to connect a micrometer-scale metallic island, the complete evolution is explored while scanning the entire range of connection strengths, from tunnel barrier to ballistic contact. We observe a robust scaling of charge quantization as the square root of the residual electron reflection probability across a quantum channel when approaching the ballistic critical point, which also applies beyond the regimes yet accessible to theory. At increased temperatures, the thermal fluctuations result in an exponential suppression of charge quantization as well as in a universal square root scaling, for arbitrary connection strengths, in agreement with expectations. Besides direct applications to improve single-electron functionalities and for the metal-semiconductor hybrids emerging in the quest toward topological quantum computing, the knowledge of the quantum laws of electricity will be essential for the quantum engineering of future nanoelectronic devices.