No Arabic abstract
Based on an almost complete sample of Galactic open star clusters within 1.8 kpc, we perform a comprehensive statistical analysis of various cluster parameters like spatial position, age, size, mass and extinction in order to understand the general properties of the open cluster system in the Galaxy and the Galactic structure. Based on the distribution of 1241 open clusters about the Galactic plane and in different age bins, we find the average Galactic scale height as Zh = 60+/-2 pc for the youngest cluster population having Age <700 Myr, however, it increases up to 64+/-2 pc when we also include older population of clusters. The solar offset is found to be 6.2+/-1.1 pc above the formal Galactic plane. We derive a local mass density of rho_0 = 0.090+/-0.005 Msun/pc^3 and found a negligibly small amount of dark matter in the solar neighbourhood. The reddening in the direction of clusters suggests a strong correlation with their vertical distance from the Galactic plane having a respective slope of dE(B-V)/dz = 0.40+/-0.04 and 0.42+/-0.05 mag/kpc below and above the GP. We observe a linear mass-radius and mass-age relations in the open clusters and derive a slope of dR/d(logM) = 2.08+/-0.10 and d(logM)/d(logT) = -0.36+/-0.05,respectively.
We present the results of the hierarchical clustering analysis of the Gaia DR2 data to search for clusters, co-moving groups, and other stellar structures. The current paper builds on the sample from the previous work, extending it in distance from 1 kpc to 3 kpc, increasing the number of identified structures up to 8292. To aid in the analysis of the population properties, we developed a neural network called Auriga to robustly estimate the age, extinction, and distance of a stellar group based on the input photometry and parallaxes of the individual members. We apply Auriga to derive the properties of not only the structures found in this paper, but also previously identified open clusters. Through this work, we examine the temporal structure of the spiral arms. Specifically, we find that the Sagittarius arm has moved by >500 pc in the last 100 Myr, and the Perseus arm has been experiencing a relative lull in star formation activity over the last 25 Myr. We confirm the findings from the previous paper on the transient nature of the spiral arms, with the timescale of transition of a few 100 Myr. Finally, we find a peculiar ~1 Gyr old stream of stars that appears to be heliocentric. It is unclear what is the origin of it.
We present a large, homogeneous catalogue of molecular clouds within 4 kpc from the Sun at low Galactic latitudes ($|b|$ $<$ 10degr) with unprecedented accurate distance determinations. Based on the three-dimensional dust reddening map and estimates of colour excesses and distances of over 32 million stars presented in Chen et al, we have identified 567 dust/molecular clouds with a hierarchical structure identification method and obtained their distance estimates by a dust model fitting algorithm. The typical distance uncertainty is less than 5 per cent. As far as we know, this is the first large catalogue of molecular clouds in the Galactic plane with distances derived in a direct manner. The clouds are seen to lie along the Sagittarius, Local and Perseus Arms. In addition to the known structures, we propose the existence of a possible {it spur}, with a pitch angle of about 34degr, connecting the Local and the Sagittarius Arms in the fourth quadrant. We have also derived the physical properties of those molecular clouds. The distribution of cloud properties in different parameter spaces agrees grossly with the previous results. Our cloud sample is an ideal starting point to study the concentration of dust and gas in the solar vicinity and their star formation activities.
Very precise observational data are needed for studying the stellar cluster parameters (distance, reddening, age, metallicity) and cluster internal kinematics. In turn, these give us an insight into the properties of our Galaxy, for example, by giving us the ability to trace Galactic spiral structure, star formation rates and metallicity gradients. We investigated the available Gaia DR2 catalogue of 1229 open clusters and studied cluster distances, sizes and membership distributions in the 3D space. An appropriate analysis of the parallaxto-distance transformation problem is presented in the context of getting distances toward open clusters and estimating their sizes. Based on our investigation of the Gaia DR2 data we argue that, within 2 kpc, the inverse-parallax method gives comparable results (distances and sizes) as the Bayesian approach based on the exponentially decreasing volume density prior. Both of these methods show very similar dependence of the line-of-sight elongation of clusters (needle-like shapes resulting from the parallax uncertainties) on the distance. We also looked at a measure of elongations of the studied clusters and find the maximum distance of 665 pc at which a spherical fit still contains about half of the stellar population of a cluster. It follows from these results that the 3D structure of an open cluster cannot be properly studied beyond about 500 pc when using any of mentioned standard transformations of parallaxes to distances.
Open clusters are unique tracers of the history of our own Galaxys disk. According to our membership analysis based on textit{Gaia} astrometry, out of the 226 potential clusters falling in the footprint of GALAH or APOGEE, we find that 205 have secure members that were observed by at least one of the survey. Furthermore, members of 134 clusters have high-quality spectroscopic data that we use to determine their chemical composition. We leverage this information to study the chemical distribution throughout the Galactic disk of 21 elements, from C to Eu. The radial metallicity gradient obtained from our analysis is $-$0.076$pm$0.009 dex kpc$^{-1}$, which is in agreement with previous works based on smaller samples. Furthermore, the gradient in the [Fe/H] - guiding radius (r$_{rm guid}$) plane is $-$0.073$pm$0.008 dex kpc$^{-1}$. We show consistently that open clusters trace the distribution of chemical elements throughout the Galactic disk differently than field stars. In particular, at given radius, open clusters show an age-metallicity relation that has less scatter than field stars. As such scatter is often interpreted as an effect of radial migration, we suggest that these differences are due to the physical selection effect imposed by our Galaxy: clusters that would have migrated significantly also had higher chances to get destroyed. Finally, our results reveal trends in the [X/Fe]$-$r$_{rm guid}$$-$age space, which are important to understand production rates of different elements as a function of space and time.
Radial migration is an important process in the Galactic disk. A few open clusters show some evidence on this mechanism but there is no systematic study. In this work, we investigate the role of radial migration on the Galactic disk based on a large sample of 146 open clusters with homogeneous metallicity and age from Netopil et al. and kinematics calculated from Gaia DR2. The birth site Rb, guiding radius Rg and other orbital parameters are calculated, and the migration distance |Rg-Rb| is obtained, which is a combination of metallicity, kinematics and age information. It is found that 44% open clusters have |Rg-Rb|< 1 kpc, for which radial migration (churning) is not significant. Among the remaining 56% open clusters with |Rg-Rb|> 1 kpc, young ones with t<1.0 Gyr tend to migrate inward, while older clusters usually migrate outward. Different mechanisms of radial migration between young and old clusters are suggested based on their different migration rates, Galactic locations and orbital parameters. For the old group, we propose a plausible way to estimate migration rate and obtain a reasonable value of 1.5(+-0.5) kpc/Gyr based on ten intermediate-age clusters at the outer disk, where the existence of several special clusters implies its complicate formation history.