No Arabic abstract
By considering graphs as discrete analogues of Riemann surfaces, Baker and Norine (Adv. Math. 2007) developed a concept of linear systems of divisors for graphs. Building on this idea, a concept of gonality for graphs has been defined and has generated much recent interest. We show that there are connected graphs of treewidth 2 of arbitrarily high gonality. We also show that there exist pairs of connected graphs ${G,H}$ such that $Hsubseteq G$ and $H$ has strictly lower gonality than $G$. These results resolve three open problems posed in a recent survey by Norine (Surveys in Combinatorics 2015).
A star $k$-coloring is a proper $k$-coloring where the union of two color classes induces a star forest. While every planar graph is 4-colorable, not every planar graph is star 4-colorable. One method to produce a star 4-coloring is to partition the vertex set into a 2-independent set and a forest; such a partition is called an I,F-partition. We use a combination of potential functions and discharging to prove that every graph with maximum average degree less than $frac{5}{2}$ has an I,F-partition, which is sharp and answers a question of Cranston and West [A guide to the discharging method, arXiv:1306.4434]. This result implies that planar graphs of girth at least 10 are star 4-colorable, improving upon previous results of Bu, Cranston, Montassier, Raspaud, and Wang [Star coloring of sparse graphs, J. Graph Theory 62 (2009), 201-219].
Sparse graphs and their associated matroids play an important role in rigidity theory, where they capture the combinatorics of generically rigid structures. We define a new family called {bf graded sparse graphs}, arising from generically pinned (completely immobilized) bar-and-joint frameworks and prove that they also form matroids. We address five problems on graded sparse graphs: {bf Decision}, {bf Extraction}, {bf Components}, {bf Optimization}, and {bf Extension}. We extend our {bf pebble game algorithms} to solve them.
An (improper) graph colouring has defect $d$ if each monochromatic subgraph has maximum degree at most $d$, and has clustering $c$ if each monochromatic component has at most $c$ vertices. This paper studies defective and clustered list-colourings for graphs with given maximum average degree. We prove that every graph with maximum average degree less than $frac{2d+2}{d+2} k$ is $k$-choosable with defect $d$. This improves upon a similar result by Havet and Sereni [J. Graph Theory, 2006]. For clustered choosability of graphs with maximum average degree $m$, no $(1-epsilon)m$ bound on the number of colours was previously known. The above result with $d=1$ solves this problem. It implies that every graph with maximum average degree $m$ is $lfloor{frac{3}{4}m+1}rfloor$-choosable with clustering 2. This extends a result of Kopreski and Yu [Discrete Math., 2017] to the setting of choosability. We then prove two results about clustered choosability that explore the trade-off between the number of colours and the clustering. In particular, we prove that every graph with maximum average degree $m$ is $lfloor{frac{7}{10}m+1}rfloor$-choosable with clustering $9$, and is $lfloor{frac{2}{3}m+1}rfloor$-choosable with clustering $O(m)$. As an example, the later result implies that every biplanar graph is 8-choosable with bounded clustering. This is the best known result for the clustered version of the earth-moon problem. The results extend to the setting where we only consider the maximum average degree of subgraphs with at least some number of vertices. Several applications are presented.
A {bf map} is a graph that admits an orientation of its edges so that each vertex has out-degree exactly 1. We characterize graphs which admit a decomposition into $k$ edge-disjoint maps after: (1) the addition of {it any} $ell$ edges; (2) the addition of {it some} $ell$ edges. These graphs are identified with classes of {it sparse} graphs; the results are also given in matroidal terms.
The blow-up lemma states that a system of super-regular pairs contains all bounded degree spanning graphs as subgraphs that embed into a corresponding system of complete pairs. This lemma has far-reaching applications in extremal combinatorics. We prove sparse analogues of the blow-up lemma for subgraphs of random and of pseudorandom graphs. Our main results are the following three spar