Symbolic dynamics for non-uniformly hyperbolic surface maps with discontinuities


Abstract in English

This work constructs symbolic dynamics for non-uniformly hyperbolic surface maps with a set of discontinuities $D$. We allow the derivative of points nearby $D$ to be unbounded, of the order of a negative power of the distance to $D$. Under natural geometrical assumptions on the underlying space $M$, we code a set of non-uniformly hyperbolic orbits that do not converge exponentially fast to $D$. The results apply to non-uniformly hyperbolic planar billiards, e.g. Bunimovich stadia.

Download