Recent efforts to survey the numerous softwares available to perform single molecule tracking (SMT) highlighted a significant dependence of the outcomes on the specific method used, and the limitation encountered by most techniques to capture fast movements in a crowded environment. Other approaches to identify the mode and rapidity of motion of fluorescently labeled biomolecules, that do not relay on the localization and linking of the images of isolated single molecules are, however, available.This direct comparison shows that correlative imaging analysis approaches complement effectively current SMT methods in circumstances when, due to either the density of the sample, the low signal to noise ratio or molecular blinking, trajectory linking does not allow to capture long-range or fast motion.