We present a new nanoscale superconducting quantum interference device (SQUID) whose interference pattern can be shifted electrically in-situ. The device consists of a nanoscale four-terminal/four-junction SQUID fabricated at the apex of a sharp pipette using a self-aligned three-step deposition of Pb. In contrast to conventional two-terminal/two-junction SQUIDs that display optimal sensitivity when flux biased to about a quarter of the flux quantum, the additional terminals and junctions allow optimal sensitivity at arbitrary applied flux, thus eliminating the magnetic field blind spots. We demonstrate spin sensitivity of 5 to 8 $mu_B/text{Hz}^{1/2}$ over a continuous field range of 0 to 0.5 T, with promising applications for nanoscale scanning magnetic imaging.