Van Dam and Hayden introduced a concept commonly referred to as embezzlement, where, for any entangled quantum state $phi$, there is an entangled catalyst state $psi$, from which a high fidelity approximation of $phi otimes psi$ can be produced using only local operations. We investigate a version of this where the embezzlement is perfect (i.e., the fidelity is 1). We prove that perfect embezzlement is impossible in a tensor product framework, even with infinite-dimensional Hilbert spaces and infinite entanglement entropy. Then we prove that perfect embezzlement is possible in a commuting operator framework. We prove this using the theory of C*-algebras and we also provide an explicit construction. Next, we apply our results to analyze perfe