No Arabic abstract
Atmospheric trace-gas inversion is the procedure by which the sources and sinks of a trace gas are identified from observations of its mole fraction at isolated locations in space and time. This is inherently a spatio-temporal bivariate inversion problem, since the mole-fraction field evolves in space and time and the flux is also spatio-temporally distributed. Further, the bivariate model is likely to be non-Gaussian since the flux field is rarely Gaussian. Here, we use conditioning to construct a non-Gaussian bivariate model, and we describe some of its properties through auto- and cross-cumulant functions. A bivariate non-Gaussian, specifically trans-Gaussian, model is then achieved through the use of Box--Cox transformations, and we facilitate Bayesian inference by approximating the likelihood in a hierarchical framework. Trace-gas inversion, especially at high spatial resolution, is frequently highly sensitive to prior specification. Therefore, unlike conventional approaches, we assimilate trace-gas inventory information with the observational data at the parameter layer, thus shifting prior sensitivity from the inventory itself to its spatial characteristics (e.g., its spatial length scale). We demonstrate the approach in controlled-experiment studies of methane inversion, using fluxes extracted from inventories of the UK and Ireland and of Northern Australia.
Atmospheric trace-gas inversion refers to any technique used to predict spatial and temporal fluxes using mole-fraction measurements and atmospheric simulations obtained from computer models. Studies to date are most often of a data-assimilation flavour, which implicitly consider univariate statistical models with the flux as the variate of interest. This univariate approach typically assumes that the flux field is either a spatially correlated Gaussian process or a spatially uncorrelated non-Gaussian process with prior expectation fixed using flux inventories (e.g., NAEI or EDGAR in Europe). Here, we extend this approach in three ways. First, we develop a bivariate model for the mole-fraction field and the flux field. The bivariate approach allows optimal prediction of both the flux field and the mole-fraction field, and it leads to significant computational savings over the univariate approach. Second, we employ a lognormal spatial process for the flux field that captures both the lognormal characteristics of the flux field (when appropriate) and its spatial dependence. Third, we propose a new, geostatistical approach to incorporate the flux inventories in our updates, such that the posterior spatial distribution of the flux field is predominantly data-driven. The approach is illustrated on a case study of methane (CH$_4$) emissions in the United Kingdom and Ireland.
Aiming to generate realistic synthetic times series of the bivariate process of daily mean temperature and precipitations, we introduce a non-homogeneous hidden Markov model. The non-homogeneity lies in periodic transition probabilities between the hidden states, and time-dependent emission distributions. This enables the model to account for the non-stationary behaviour of weather variables. By carefully choosing the emission distributions, it is also possible to model the dependance structure between the two variables. The model is applied to several weather stations in Europe with various climates, and we show that it is able to simulate realistic bivariate time series.
Gaussian random fields have been one of the most popular tools for analyzing spatial data. However, many geophysical and environmental processes often display non-Gaussian characteristics. In this paper, we propose a new class of spatial models for non-Gaussian random fields on a sphere based on a multi-resolution analysis. Using a special wavelet frame, named spherical needlets, as building blocks, the proposed model is constructed in the form of a sparse random effects model. The spatial localization of needlets, together with carefully chosen random coefficients, ensure the model to be non-Gaussian and isotropic. The model can also be expanded to include a spatially varying variance profile. The special formulation of the model enables us to develop efficient estimation and prediction procedures, in which an adaptive MCMC algorithm is used. We investigate the accuracy of parameter estimation of the proposed model, and compare its predictive performance with that of two Gaussian models by extensive numerical experiments. Practical utility of the proposed model is demonstrated through an application of the methodology to a data set of high-latitude ionospheric electrostatic potentials, generated from the LFM-MIX model of the magnetosphere-ionosphere system.
Updating observations of a signal due to the delays in the measurement process is a common problem in signal processing, with prominent examples in a wide range of fields. An important example of this problem is the nowcasting of COVID-19 mortality: given a stream of reported counts of daily deaths, can we correct for the delays in reporting to paint an accurate picture of the present, with uncertainty? Without this correction, raw data will often mislead by suggesting an improving situation. We present a flexible approach using a latent Gaussian process that is capable of describing the changing auto-correlation structure present in the reporting time-delay surface. This approach also yields robust estimates of uncertainty for the estimated nowcasted numbers of deaths. We test assumptions in model specification such as the choice of kernel or hyper priors, and evaluate model performance on a challenging real dataset from Brazil. Our experiments show that Gaussian process nowcasting performs favourably against both comparable methods, and against a small sample of expert human predictions. Our approach has substantial practical utility in disease modelling -- by applying our approach to COVID-19 mortality data from Brazil, where reporting delays are large, we can make informative predictions on important epidemiological quantities such as the current effective reproduction number.
In the sport of cricket, variations in a players batting ability can usually be measured on one of two scales. Short-term changes in ability that are observed during a single innings, and long-term changes that are witnessed between matches, over entire playing careers. To measure long-term variations, we derive a Bayesian parametric model that uses a Gaussian process to measure and predict how the batting abilities of international cricketers fluctuate between innings. The model is fitted using nested sampling given its high dimensionality and for ease of model comparison. Generally speaking, the results support an anecdotal description of a typical sporting career. Young players tend to begin their careers with some raw ability, which improves over time as a result of coaching, experience and other external circumstances. Eventually, players reach the peak of their career, after which ability tends to decline. The model provides more accurate quantifications of current and future player batting abilities than traditional cricketing statistics, such as the batting average. The results allow us to identify which players are improving or deteriorating in terms of batting ability, which has practical implications in terms of player comparison, talent identification and team selection policy.