We theoretically investigate a possibility to establish multi-qubit quantum correlations in one-dimensional chains of qubits. We combine a reservoir engineering strategy with coherent dynamics to generate multi-qubit entangled states. We find that an interplay between the coherent and incoherent dynamics result in the generation of stable (time-independent) many-body entangled steady states. Our results will be relevant in the context of the dissipative generation of quantum states, with applications in short-distance quantum computation and for exploring the emergence of collective phenomena in many-body open quantum systems.