Do you want to publish a course? Click here

On the search for the chiral anomaly in Weyl semimetals: The negative longitudinal magnetoresistance

91   0   0.0 ( 0 )
 Added by Ricardo dos Reis
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recently, the existence of massless chiral (Weyl) fermions has been postulated in a class of semi-metals with a non-trivial energy dispersion.These materials are now commonly dubbed Weyl semi-metals (WSM).One predicted property of Weyl fermions is the chiral or Adler-Bell-Jackiw anomaly, a chirality imbalance in the presence of parallel magnetic and electric fields. In WSM, it is expected to induce a negative longitudinal magnetoresistance (NMR), the chiral magnetic effect.Here, we present experimental evidence that the observation of the chiral magnetic effect can be hindered by an effect called current jetting. This effect also leads to a strong apparent NMR, but it is characterized by a highly non-uniform current distribution inside the sample. It appears in materials possessing a large field-induced anisotropy of the resistivity tensor, such as almost compensated high-mobility semimetals due to the orbital effect.In case of a non-homogeneous current injection, the potential distribution is strongly distorted in the sample.As a consequence, an experimentally measured potential difference is not proportional to the intrinsic resistance.Our results on the MR of the WSM candidate materials NbP, NbAs, TaAs, TaP exhibit distinct signatures of an inhomogeneous current distribution, such as a field-induced zero resistance and a strong dependence of the `measured resistance on the position, shape, and type of the voltage and current contacts on the sample. A misalignment between the current and the magnetic-field directions can even induce a negative resistance. Finite-element simulations of the potential distribution inside the sample, using typical resistance anisotropies, are in good agreement with the experimental findings. Our study demonstrates that great care must be taken before interpreting measurements of a NMR as evidence for the chiral anomaly in putative Weyl semimetals.



rate research

Read More

Chiral anomaly induced negative magnetoresistance (NMR) has been widely used as a critical transport evidence on the existence of Weyl fermions in topological semimetals. In this mini review, we discuss the general observation of the NMR phenomena in non-centrosymmetric NbP and NbAs. We show that NMR can be contributed by intrinsic chiral anomaly of Weyl fermions and/or extrinsic effects, such as superimposition of Hall signals, field-dependent inhomogeneous current flow in the bulk, i.e. current jetting, and weak localization (WL) of coexistent trivial carriers. Such WL controlled NMR is heavily dependent on sample quality, and is characterized by pronounced crossover from positive to negative MR growth at elevated temperatures, as a result of the competition between the phase coherence time and the spin-orbital scattering constant of the bulk trivial pockets. Thus, the correlation of NMR and chiral anomaly needs to be scrutinized, without the support of other complimentary techniques. Due to the lifting of spin degeneracy, the spin orientations of Weyl fermions are either parallel or antiparallel to the momentum, a unique physical property known as helicity. The conservation of helicity provides strong protection for the transport of Weyl fermions, which can only be effectively scattered by magnetic impurities. Chemical doping of magnetic and non-magnetic impurities are thus more convincing in probing the existence of Weyl fermions than the NMR method.
Weyl semi-metal is the three dimensional analog of graphene. According to the quantum field theory, the appearance of Weyl points near the Fermi level will cause novel transport phenomena related to chiral anomaly. In the present paper, we report the first experimental evidence for the long-anticipated negative magneto-resistance generated by the chiral anomaly in a newly predicted time-reversal invariant Weyl semi-metal material TaAs. Clear Shubnikov de Haas oscillations (SdH) have been detected starting from very weak magnetic field. Analysis of the SdH peaks gives the Berry phase accumulated along the cyclotron orbits to be {pi}, indicating the existence of Weyl points.
Weyl semimetals (WSMs) are topological quantum states wherein the electronic bands linearly disperse around pairs of nodes, the Weyl points, of fixed (left or right) chirality. The recent discovery of WSM materials triggered an experimental search for the exotic quantum phenomenon known as the chiral anomaly. Via the chiral anomaly nonorthogonal electric and magnetic fields induce a chiral density imbalance that results in an unconventional negative longitudinal magnetoresistance, the chiral magnetic effect. Recent theoretical work suggests that this effect does not require well-defined Weyl nodes. Experimentally however, it remains an open question to what extent it survives when chirality is not well-defined, for example when the Fermi energy is far away from the Weyl points. Here, we establish the detailed Fermi surface topology of the recently identified WSM TaP via a combination of angle-resolved quantum oscillation spectra and band structure calculations. The Fermi surface forms spin-polarized banana-shaped electron and hole pockets attached to pairs of Weyl points. Although the chiral anomaly is therefore ill-defined, we observe a large negative magnetoresistance (NMR) appearing for collinear magnetic and electric fields as observed in other WSMs. In addition, we show experimental signatures indicating that such longitudinal magnetoresistance measurements can be affected by an inhomogeneous current distribution inside the sample in a magnetic field. Our results provide a clear framework how to detect the chiral magnetic effect.
271 - Shiva Heidari , Reza Asgari 2019
In this paper, the chiral Hall effect of strained Weyl semimetals without any external magnetic field is proposed. Electron-phonon coupling emerges in the low-energy fermionic sector through a pseudogauge potential. We show that, by using chiral kinetic theory, the chiral Hall effect appears as a response to a real time-varying electric field in the presence of structural distortion and it causes spatial chirality and charges separation in a Weyl system. We also show that the coupling of the electrons to acoustic phonons as a gapless excitation leads to emerging an optical absorption peak at $omega=omega_{el}$, where $omega_{el}$ is defined as a characteristic frequency associated with the pseudomagnetic field. We also propose the strain-induced planar Hall effect as another transport signature of the chiral-anomaly equation.
Negative longitudinal magnetoresistance (NLMR) has been reported in a variety of materials and has attracted extensive attention as an electrotransport hallmark of topological Weyl semimetals. However, its origin is still under debate. Here, we demonstrate that the NLMR in a two dimensional electron gas can be influenced by the measurement current. While the NLMR persists up to 130 K, its magnitude and magnetic field response become dependent on the applied current below 60 K. The tunable NLMR at low and high currents can be best attributed to quantum interference and disorder scattering effects, respectively. This work uncovers non-Ohmic NLMR in a non-Weyl material and highlights potential effects of the measurement current in elucidating electrotransport phenomena. We also demonstrate that NLMRs can be a valuable phenomenon in revealing the origins of other properties, such as negative MRs in perpendicular magnetic fields.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا