Quantum decoherence dynamics of divacancy spins in silicon carbide


Abstract in English

Long coherence times are key to the performance of quantum bits (qubits). Here, we experimentally and theoretically show that the Hahn-echo coherence time (T2) of electron spins associated with divacancy defects in 4H-SiC reaches 1.3 ms, one of the longest T2 times of an electron spin in a naturally isotopic crystal. Using a first-principles microscopic quantum-bath model, we find that two factors determine the unusually robust coherence. First, in the presence of moderate magnetic fields (300 G and above), the 29Si and 13C paramagnetic nuclear spin baths are decoupled. In addition, because SiC is a binary crystal, homo-nuclear spin pairs are both diluted and forbidden from forming strongly coupled, nearest-neighbor spin pairs. Longer neighbor distances result in fewer nuclear spin flip-flops, a less fluctuating intra-crystalline magnetic environment, and thus a longer T2 time. Our results point to polyatomic crystals as promising hosts for coherent qubits in the solid state.

Download