No Arabic abstract
The mixture/interaction of anti-sunward-propagating Alfvenic fluctuations (AFs) and sunward-propagating Alfvenic fluctuations (SAFs) is believed to result in the decrease of the Alfvenicity of solar wind fluctuations with increasing heliocentric distance. However, SAFs are rarely observed at 1 au and solar wind AFs are found to be generally outward. Using the measurements from Voyager 2 and Wind, we perform a statistical survey of SAFs in the heliosphere inside 6 au. We first report two SAF events observed by Voyager 2. One is in the anti-sunward magnetic sector with a strong positive correlation between the fluctuations of magnetic field and solar wind velocity. The other one is in the sunward magnetic sector with a strong negative magnetic field-velocity correlation. Statistically, the percentage of SAFs increases gradually with heliocentric distance, from about 2.7% at 1.0 au to about 8.7% at 5.5 au. These results provide new clues for understanding the generation mechanism of SAFs.
The slow solar wind is typically characterized as having low Alfvenicity. However, Parker Solar Probe (PSP) observed predominately Alfvenic slow solar wind during several of its initial encounters. From its first encounter observations, about 55.3% of the slow solar wind inside 0.25 au is highly Alfvenic ($|sigma_C| > 0.7$) at current solar minimum, which is much higher than the fraction of quiet-Sun-associated highly Alfvenic slow wind observed at solar maximum at 1 au. Intervals of slow solar wind with different Alfvenicities seem to show similar plasma characteristics and temperature anisotropy distributions. Some low Alfvenicity slow wind intervals even show high temperature anisotropies, because the slow wind may experience perpendicular heating as fast wind does when close to the Sun. This signature is confirmed by Wind spacecraft measurements as we track PSP observations to 1 au. Further, with nearly 15 years of Wind measurements, we find that the distributions of plasma characteristics, temperature anisotropy and helium abundance ratio ($N_alpha/N_p$) are similar in slow winds with different Alfvenicities, but the distributions are different from those in the fast solar wind. Highly Alfvenic slow solar wind contains both helium-rich ($N_alpha/N_psim0.045$) and helium-poor ($N_alpha/N_psim0.015$) populations, implying it may originate from multiple source regions. These results suggest that highly Alfvenic slow solar wind shares similar temperature anisotropy and helium abundance properties with regular slow solar winds, and they thus should have multiple origins.
We make use of the Parker Solar Probe (PSP) data to explore the nature of solar wind turbulence focusing on the Alfvenic character and power spectra of the fluctuations and their dependence on distance and context (i.e. large scale solar wind properties), aiming to understand the role that different effects such as source properties, solar wind expansion, stream interaction might play in determining the turbulent state. We carry out a statistical survey of the data from the first five orbits of PSP with a focus on how the fluctuation properties at the large, MHD scales, vary with different solar wind streams and distance from the Sun. A more in-depth analysis from several selected periods is also presented. Our results show that as fluctuations are transported outward by the solar wind, the magnetic field spectrum steepens while the shape of the velocity spectrum remains unchanged. The steepening process is controlled by the age of the turbulence, determined by the wind speed together with the radial distance. Statistically, faster solar wind has higher Alfvenicity, with more dominant outward propagating wave component and more balanced magnetic/kinetic energies. The outward wave dominance gradually weakens with radial distance, while the excess of magnetic energy is found to be stronger as we move closer toward the Sun. We show that the turbulence properties can vary significantly stream to stream even if these streams are of similar speed, indicating very different origins of these streams. Especially, the slow wind that originates near the polar coronal holes has much lower Alfvenicity compared with the slow wind that originates from the active regions/pseudostreamers. We show that structures such as heliospheric current sheets and velocity shears can play an important role in modifying the properties of the turbulence.
Solar wind electrons play an important role in the energy balance of the solar wind acceleration by carrying energy into interplanetary space in the form of electron heat flux. The heat flux is stored in the complex electron velocity distribution functions (VDFs) shaped by expansion, Coulomb collisions, and field-particle interactions. We investigate how the suprathermal electron deficit in the anti-strahl direction, which was recently discovered in the near-Sun solar wind, drives a kinetic instability and creates whistler waves with wave vectors that are quasi-parallel to the direction of the background magnetic field. We combine high-cadence measurements of electron pitch-angle distribution functions and electromagnetic waves provided by Solar Orbiter during its first orbit. Our case study is based on a burst-mode data interval from the Electrostatic Analyser System (SWA-EAS) at a distance of 112 $R_S$ (0.52 au) from the Sun, during which several whistler wave packets were detected by Solar Orbiters Radio and Plasma Waves (RPW) instrument. The sunward deficit creates kinetic conditions under which the quasi-parallel whistler wave is driven unstable. We directly test our predictions for the existence of these waves through solar wind observations. We find whistler waves that are quasi-parallel and almost circularly polarised, propagating away from the Sun, coinciding with a pronounced sunward deficit in the electron VDF. The cyclotron-resonance condition is fulfilled for electrons moving in the direction opposite to the direction of wave propagation, with energies corresponding to those associated with the sunward deficit.
We use fluctuating magnetic helicity to investigate the polarisation properties of Alfvenic fluctuations at ion-kinetic scales in the solar wind as a function of $beta_p$, the ratio of proton thermal pressure to magnetic pressure, and $theta_{vB}$, the angle between the proton flow and local mean magnetic field, $mathbf{B}_0$. Using almost 15 years of textit{Wind} observations, we separate the contributions to helicity from fluctuations with wave-vectors, $textbf{k}$, quasi-parallel and oblique to $mathbf{B}_0$, finding that the helicity of Alfvenic fluctuations is consistent with predictions from linear Vlasov theory. This result suggests that the non-linear turbulent fluctuations at these scales share at least some polarisation properties with Alfven waves. We also investigate the dependence of proton temperature in the $beta_p$-$theta_{vB}$ plane to probe for possible signatures of turbulent dissipation, finding that it correlates with $theta_{vB}$. The proton temperature parallel to $mathbf{B}_0$ is higher in the parameter space where we measure the helicity of right-handed Alfvenic fluctuations, and the temperature perpendicular to $mathbf{B}_0$ is higher where we measure left-handed fluctuations. This finding is inconsistent with the general assumption that by sampling different $theta_{vB}$ in the solar wind we can analyse the dependence of the turbulence distribution on $theta_{kB}$, the angle between $textbf{k}$ and $mathbf{B}_0$. After ruling out both instrumental and expansion effects, we conclude that our results provide new evidence for the importance of local kinetic processes that depend on $theta_{vB}$ in determining proton temperature in the solar wind.
While pressure balance can predict how far the magnetopause will move in response to an upstream pressure change, it cannot determine how fast the transient reponse will be. Using Time History of Events and Macroscale Interactions during Substorms (THEMIS), we present multipoint observations revealing, for the first time, strong (thermal + magnetic) pressure gradients in the magnetosheath due to a foreshock transient, most likely a Hot Flow Anomaly (HFA), which decreased the total pressure upstream of the bow shock. By converting the spacecraft time series into a spatial picture, we quantitatively show that these pressure gradients caused the observed acceleration of the plasma, resulting in fast sunward magnetosheath flows ahead of a localised outward distortion of the magnetopause. The acceleratation of the magnetosheath plasma was fast enough to keep the peak of the magnetopause bulge at approximately the equilibrium position i.e. in pressure balance. Therefore, we show that pressure gradients in the magnetosheath due to transient changes in the total pressure upstream can directly drive anomalous flows and in turn are important in transmitting information from the bow shock to the magnetopause.