No Arabic abstract
There are several approaches to analyse the worst-case response times of sporadic packets transmitted over priority-preemptive wormhole networks. In this paper, we provide an overview of the different approaches, discuss their strengths and weaknesses, and propose an approach that captures all effects considered by previous approaches while providing tight yet safe upper bounds for packet response times. We specifically address the problems created by buffering and backpressure in wormhole networks, which amplifies the problem of indirect interference in a way that has not been considered by the early analysis approaches. Didactic examples and large-scale experiments with synthetically generated packet flow sets provide evidence of the strength of the proposed approach.
Simulations and runtime measurements are some of the methods which can be used to evaluate whether a given NoC-based platform can accommodate application workload and fulfil its timing requirements. Yet, these techniques are often time-consuming, and hence can evaluate only a limited set of scenarios. Therefore, these approaches are not suitable for safety-critical and hard real-time systems, where one of the fundamental requirements is to provide strong guarantees that all timing requirements will always be met, even in the worst-case conditions. For such systems the analytic-based real-time analysis is the only viable approach. In this paper the focus is on the real-time communication analysis for wormhole-switched priority-preemptive NoCs. First, we elaborate on the existing analysis and identify one source of pessimism. Then, we propose an extension to the analysis, which efficiently overcomes this limitation, and allows for a less pessimistic analysis. Finally, through a comprehensive experimental evaluation, we compare the newly proposed approach against the existing one, and also observe how the trends change with different traffic parameters.
Myopic is a hard real-time process scheduling algorithm that selects a suitable process based on a heuristic function from a subset (Window)of all ready processes instead of choosing from all available processes, like original heuristic scheduling algorithm. Performance of the algorithm significantly depends on the chosen heuristic function that assigns weight to different parameters like deadline, earliest starting time, processing time etc. and the sizeof the Window since it considers only k processes from n processes (where, k<= n). This research evaluates the performance of the Myopic algorithm for different parameters to demonstrate the merits and constraints of the algorithm. A comparative performance of the impact of window size in implementing the Myopic algorithm is presented and discussed through a set of experiments.
Inter-datacenter networks connect dozens of geographically dispersed datacenters and carry traffic flows with highly variable sizes and different classes. Adaptive flow routing can improve efficiency and performance by assigning paths to new flows according to network status and flow properties. A popular approach widely used for traffic engineering is based on current bandwidth utilization of links. We propose an alternative that reduces bandwidth usage by up to at least 50% and flow completion times by up to at least 40% across various scheduling policies and flow size distributions.
The recent line of research into topology design focuses on lowering network diameter. Many low-diameter topologies such as Slim Fly or Jellyfish that substantially reduce cost, power consumption, and latency have been proposed. A key challenge in realizing the benefits of these topologies is routing. On one hand, these networks provide shorter path lengths than established topologies such as Clos or torus, leading to performance improvements. On the other hand, the number of shortest paths between each pair of endpoints is much smaller than in Clos, but there is a large number of non-minimal paths between router pairs. This hampers or even makes it impossible to use established multipath routing schemes such as ECMP. In this work, to facilitate high-performance routing in modern networks, we analyze existing routing protocols and architectures, focusing on how well they exploit the diversity of minimal and non-minimal paths. We first develop a taxonomy of different forms of support for multipathing and overall path diversity. Then, we analyze how existing routing schemes support this diversity. Among others, we consider multipathing with both shortest and non-shortest paths, support for disjoint paths, or enabling adaptivity. To address the ongoing convergence of HPC and Big Data domains, we consider routing protocols developed for both HPC systems and for data centers as well as general clusters. Thus, we cover architectures and protocols based on Ethernet, InfiniBand, and other HPC networks such as Myrinet. Our review will foster developing future high-performance multipathing routing protocols in supercomputers and data centers.
With traditional open-loop scheduling of network resources, the quality-of-control (QoC) of networked control systems (NCSs) may degrade significantly in the presence of limited bandwidth and variable workload. The goal of this work is to maximize the overall QoC of NCSs through dynamically allocating available network bandwidth. Based on codesign of control and scheduling, an integrated feedback scheduler is developed to enable flexible QoC management in dynamic environments. It encompasses a cascaded feedback scheduling module for sampling period adjustment and a direct feedback scheduling module for priority modification. The inherent characteristics of priority-driven control networks make it feasible to implement the proposed feedback scheduler in real-world systems. Extensive simulations show that the proposed approach leads to significant QoC improvement over the traditional open-loop scheduling scheme under both underloaded and overloaded network conditions.