Do you want to publish a course? Click here

On a coupled system of a Ginzburg-Landau equation with a quasilinear conservation law

137   0   0.0 ( 0 )
 Added by Hugo Tavares
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

We study the Cauchy problem for a coupled system of a complex Ginzburg-Landau equation with a quasilinear conservation law $$ left{begin{array}{rlll} e^{-itheta}u_t&=&u_{xx}-|u|^2u-alpha g(v)u& v_t+(f(v))_x&=&alpha (g(v)|u|^2)_x& end{array}right. qquad xinmathbb{R},, t geq 0, $$ which can describe the interaction between a laser beam and a fluid flow (see [Aranson, Kramer, Rev. Med. Phys. 74 (2002)]). We prove the existence of a local in time strong solution for the associated Cauchy problem and, for a certain class of flux functions, the existence of global weak solutions. Furthermore we prove the existence of standing waves of the form $(u(t,x),v(t,x))=(U(x),V(x))$ in several cases.



rate research

Read More

This paper is devoted to the asymptotic analysis of a fractional version of the Ginzburg-Landau equation in bounded domains, where the Laplacian is replaced by an integro-differential operator related to the square root Laplacian as defined in Fourier space. In the singular Ginzburg-Landau limit, we show that solutions with uniformly bounded energy converge weakly to sphere valued 1/2-harmonic maps, i.e., the fractional analogues of the usual harmonic maps. In addition, the convergence holds in smooth functions spaces away from a (n-1)-rectifiable closed set of finite (n-1)-Hausdorff measure. The proof relies on the representation of the square root Laplacian as a Dirichlet-to-Neumann operator in one more dimension, and on the analysis of a boundary version of the Ginzburg-Landau equation. Besides the analysis of the fractional Ginzburg-Landau equation, we also give a general partial regularity result for stationary 1/2-harmonic maps in arbitrary dimension.
Localized traveling wave trains or pulses have been observed in various experiments in binary mixture convection. For strongly negative separation ratio, these pulse structures can be described as two interacting fronts of opposite orientation. An analytical study of the front solutions in a real Ginzburg-Landau equation coupled to a mean field is presented here as a first approach to the pulse solution. The additional mean field becomes important when the mass diffusion in the mixture is small as is the case in liquids. Within this framework it can lead to a hysteretic transition between slow and fast fronts when the Rayleigh number is changed.
We study the quasilinear non-local Benney System $$left{begin{array}{llll} iu_t+u_{xx}=|u|^2u+buv v_t+a(int_{mathbf{R}^+}v^2dx)v_x=-b(|u|^2)_x,quad (x,t)inmathbf{R}^+times [0,T],, T>0. end{array}right.$$ We establish the existence and uniqueness of strong local solutions to the corresponding Cauchy problem and show, under certain conditions, the blow-up of such solutions in finite time. Furthermore, we prove the existence of global weak solutions and exhibit bound-state solutions to this system.
We study a variational model which combines features of the Ginzburg-Landau model in 2D and of the Mumford-Shah functional. As in the classical Ginzburg-Landau theory, a prescribed number of point vortices appear in the small energy regime; the model allows for discontinuities, and the energy penalizes their length. The novel phenomenon here is that the vortices have a fractional degree $1/m$ with $mgeq 2$ prescribed. Those vortices must be connected by line discontinuities to form clusters of total integer degrees. The vortices and line discontinuities are therefore coupled through a topological constraint. As in the Ginzburg-Landau model, the energy is parameterized by a small length scale $varepsilon>0$. We perform a complete $Gamma$-convergence analysis of the model as $varepsilondownarrow0$ in the small energy regime. We then study the structure of minimizers of the limit problem. In particular, we show that the line discontinuities of a minimizer solve a variant of the Steiner problem. We finally prove that for small $varepsilon>0$, the minimizers of the original problem have the same structure away from the limiting vortices.
We consider a general conservation law on the circle, in the presence of a sublinear damping. If the damping acts on the whole circle, then the solution becomes identically zero in finite time, following the same mechanism as the corresponding ordinary differential equation. When the damping acts only locally in space, we show a dichotomy: if the flux function is not zero at the origin, then the transport mechanism causes the extinction of the solution in finite time, as in the first case. On the other hand, if zero is a non-degenerate critical point of the flux function, then the solution becomes extinct in finite time only inside the damping zone, decays algebraically uniformly in space, and we exhibit a boundary layer, shrinking with time, around the damping zone. Numerical illustrations show how similar phenomena may be expected for other equations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا