No Arabic abstract
The Abelian decomposition of QCD which decomposes the gluons to the color neutral binding gluons (the neurons) and the colored valence gluons (the chromons) gauge independently naturally generalizes the quark model to the quark and chromon model which could play the central role in hadron spectroscopy. We discuss the color reflection symmetry, the fundamental symmetry of the quark and chromon model, and explain how it describes the glueballs and the glueball-quarkonium mixing in QCD. We present the numerical analysis of glueball-quarkonium mixing in $0^{++}$, $2^{++}$, and $0^{-+}$ sectors below 2 GeV, and show that in the $0^{++}$ sector $f_0(500)$ and $f_0(1500)$, in the $2^{++}$ sector $f_2(1950)$, and in the $0^{-+}$ sector $eta(1405)$ and $eta(1475)$ could be identified as predominantly the glueball states. We discuss the physical implications of our result.
We have revisited glueball mixing with the pseudoscalar mesons in the MIT bag model scheme. The calculation has been performed in the spherical cavity approximation to the bag using two different fermion propagators, the cavity and the free propagators. We obtain a very small probability of mixing for the eta at the level of $0.04-0.1% and a bigger for the eta at the level of 4-12%. Our results differ from previous calculations in the same scheme but seem to agree with the experimental analysis. We discuss the origin of our difference which stems from the treatment of our time integrations.
We use QCD Laplace sum-rules to explore mixing between conventional mesons and hybrids in the heavy quarkonium vector $J^{PC}!=!1^{--}$ channel. Our cross-correlator includes perturbation theory and contributions proportional to the four-dimensional and six-dimensional gluon condensates. We input experimentally determined charmonium and bottomonium hadron masses into both single and multi-resonance models in order to test them for conventional meson and hybrid components. In the charmonium sector we find evidence for meson-hybrid mixing in the $J/psi$ and a $approx4.3$ GeV resonance. In the bottomonium sector, we find that the $Upsilon(1S)$, $Upsilon(2S)$, $Upsilon(3S)$, and $Upsilon(4S)$ all exhibit mixing.
We explore conventional meson-hybrid mixing in $J^{PC}=1^{++}$ heavy quarkonium using QCD Laplace sum-rules. We calculate the cross-correlator between a heavy conventional meson current and heavy hybrid current within the operator product expansion, including terms proportional to the four- and six-dimensional gluon condensates and the six-dimensional quark condensate. Using experimentally determined hadron masses, we construct models of the $1^{++}$ charmonium and bottomonium mass spectra. These models are used to investigate which resonances couple to both currents and thus exhibit conventional meson-hybrid mixing. In the charmonium sector, we find almost no conventional meson-hybrid mixing in the $chi_{c1}(1P)$, minimal mixing in the $X(3872)$, and significant mixing in both the $X(4140)$ and $X(4274)$. In the bottomonium sector, we find minimal conventional meson-hybrid mixing in the $chi_{b1}(1P)$ and significant mixing in both the $chi_{b1}(2P)$ and $chi_{b1}(3P)$.
Low-energy limit of quantum chromodynamics (QCD) is obtained using a mapping theorem recently proved. This theorem states that, classically, solutions of a massless quartic scalar field theory are approximate solutions of Yang-Mills equations in the limit of the gauge coupling going to infinity. Low-energy QCD is described by a Yukawa theory further reducible to a Nambu-Jona-Lasinio model. At the leading order one can compute glue-quark interactions and one is able to calculate the properties of the $sigma$ and $eta-eta$ mesons. Finally, it is seen that all the physics of strong interactions, both in the infrared and ultraviolet limit, is described by a single constant $Lambda$ arising in the ultraviolet by dimensional transmutation and in the infrared as an integration constant.
We use QCD Laplace sum-rules to study meson-hybrid mixing in vector ($1^{--}$) heavy quarkonium. We compute the QCD cross-correlator between a heavy meson current and a heavy hybrid current within the operator product expansion. In addition to leading-order perturbation theory, we include four- and six-dimensional gluon condensate contributions as well as a six-dimensional quark condensate contribution. We construct several single and multi-resonance models that take known hadron masses as inputs. We investigate which resonances couple to both currents and so exhibit meson-hybrid mixing. Compared to single resonance models that include only the ground state, we find that models that also include excited states lead to significantly improved agreement between QCD and experiment. In the charmonium sector, we find that meson-hybrid mixing is consistent with a two-resonance model consisting of the $J/psi$ and a 4.3~GeV resonance. In the bottomonium sector, we find evidence for meson-hybrid mixing in the $Upsilon(1S)$, $Upsilon(2S)$, $Upsilon(3S)$, and $Upsilon(4S)$.