Control of Exciton Valley Coherence in Transition Metal Dichalcogenide Monolayers


Abstract in English

The direct gap interband transitions in transition metal dichalcogenides monolayers are governed by chiral optical selection rules. Determined by laser helicity, optical transitions in either the $K^+$ or $K^-$ valley in momentum space are induced. Linearly polarized laser excitation prepares a coherent superposition of valley states. Here we demonstrate the control of the exciton valley coherence in monolayer WSe2 by tuning the applied magnetic field perpendicular to the monolayer plane. We show rotation of this coherent superposition of valley states by angles as large as 30 degrees in applied fields up to 9 T. This exciton valley coherence control on ps time scale could be an important step towards complete control of qubits based on the valley degree of freedom.

Download