Do you want to publish a course? Click here

Build It, Break It, Fix It: Contesting Secure Development

77   0   0.0 ( 0 )
 Added by Andrew Ruef
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

Typical security contests focus on breaking or mitigating the impact of buggy systems. We present the Build-it Break-it Fix-it BIBIFI contest which aims to assess the ability to securely build software not just break it. In BIBIFI teams build specified software with the goal of maximizing correctness performance and security. The latter is tested when teams attempt to break other teams submissions. Winners are chosen from among the best builders and the best breakers. BIBIFI was designed to be open-ended - teams can use any language tool process etc. that they like. As such contest outcomes shed light on factors that correlate with successfully building secure software and breaking insecure software. During we ran three contests involving a total of teams and two different programming problems. Quantitative analysis from these contests found that the most efficient build-it submissions used CC but submissions coded in a statically-typed language were less likely to have a security flaw build-it teams with diverse programming-language knowledge also produced more secure code. Shorter programs correlated with better scores. Break-it teams that were also build-it teams were significantly better at finding security bugs.



rate research

Read More

Typical security contests focus on breaking or mitigating the impact of buggy systems. We present the Build-it, Break-it, Fix-it (BIBIFI) contest, which aims to assess the ability to securely build software, not just break it. In BIBIFI, teams build specified software with the goal of maximizing correctness, performance, and security. The latter is tested when teams attempt to break other teams submissions. Winners are chosen from among the best builders and the best breakers. BIBIFI was designed to be open-ended; teams can use any language, tool, process, etc. that they like. As such, contest outcomes shed light on factors that correlate with successfully building secure software and breaking insecure software. We ran three contests involving a total of 156 teams and three different programming problems. Quantitative analysis from these contests found that the most efficient build-it submissions used C/C++, but submissions coded in a statically-type safe language were 11 times less likely to have a security flaw than C/C++ submissions. Break-it teams that were also successful build-it teams were significantly better at finding security bugs.
The detection of offensive language in the context of a dialogue has become an increasingly important application of natural language processing. The detection of trolls in public forums (Galan-Garcia et al., 2016), and the deployment of chatbots in the public domain (Wolf et al., 2017) are two examples that show the necessity of guarding against adversarially offensive behavior on the part of humans. In this work, we develop a training scheme for a model to become robust to such human attacks by an iterative build it, break it, fix it strategy with humans and models in the loop. In detailed experiments we show this approach is considerably more robust than previous systems. Further, we show that offensive language used within a conversation critically depends on the dialogue context, and cannot be viewed as a single sentence offensive detection task as in most previous work. Our newly collected tasks and methods will be made open source and publicly available.
Many modern data-intensive computational problems either require, or benefit from distance or similarity data that adhere to a metric. The algorithms run faster or have better performance guarantees. Unfortunately, in real applications, the data are messy and values are noisy. The distances between the data points are far from satisfying a metric. Indeed, there are a number of different algorithms for finding the closest set of distances to the given ones that also satisfy a metric (sometimes with the extra condition of being Euclidean). These algorithms can have unintended consequences, they can change a large number of the original data points, and alter many other features of the data. The goal of sparse metric repair is to make as few changes as possible to the original data set or underlying distances so as to ensure the resulting distances satisfy the properties of a metric. In other words, we seek to minimize the sparsity (or the $ell_0$ norm) of the changes we make to the distances subject to the new distances satisfying a metric. We give three different combinatorial algorithms to repair a metric sparsely. In one setting the algorithm is guaranteed to return the sparsest solution and in the other settings, the algorithms repair the metric. Without prior information, the algorithms run in time proportional to the cube of the number of input data points and, with prior information we can reduce the running time considerably.
Two-party secure function evaluation (SFE) has become significantly more feasible, even on resource-constrained devices, because of advances in server-aided computation systems. However, there are still bottlenecks, particularly in the input validation stage of a computation. Moreover, SFE research has not yet devoted sufficient attention to the important problem of retaining state after a computation has been performed so that expensive processing does not have to be repeated if a similar computation is done again. This paper presents PartialGC, an SFE system that allows the reuse of encrypted values generated during a garbled-circuit computation. We show that using PartialGC can reduce computation time by as much as 96% and bandwidth by as much as 98% in comparison with previous outsourcing schemes for secure computation. We demonstrate the feasibility of our approach with two sets of experiments, one in which the garbled circuit is evaluated on a mobile device and one in which it is evaluated on a server. We also use PartialGC to build a privacy-preserving friend finder application for Android. The reuse of previous inputs to allow stateful evaluation represents a new way of looking at SFE and further reduces computational barriers.
Understanding natural language questions entails the ability to break down a question into the requisite steps for computing its answer. In this work, we introduce a Question Decomposition Meaning Representation (QDMR) for questions. QDMR constitutes the ordered list of steps, expressed through natural language, that are necessary for answering a question. We develop a crowdsourcing pipeline, showing that quality QDMRs can be annotated at scale, and release the Break dataset, containing over 83K pairs of questions and their QDMRs. We demonstrate the utility of QDMR by showing that (a) it can be used to improve open-domain question answering on the HotpotQA dataset, (b) it can be deterministically converted to a pseudo-SQL formal language, which can alleviate annotation in semantic parsing applications. Last, we use Break to train a sequence-to-sequence model with copying that parses questions into QDMR structures, and show that it substantially outperforms several natural baselines.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا