Heteroclinic structure of parametric resonance in the nonlinear Schrodinger equation


Abstract in English

We show that the nonlinear stage of modulational instability induced by parametric driving in the {em defocusing} nonlinear Schrodinger equation can be accurately described by combining mode truncation and averaging methods, valid in the strong driving regime. The resulting integrable oscillator reveals a complex hidden heteroclinic structure of the instability. A remarkable consequence, validated by the numerical integration of the original model, is the existence of breather solutions separating different Fermi-Pasta-Ulam recurrent regimes. Our theory also shows that optimal parametric amplification unexpectedly occurs outside the bandwidth of the resonance (or Arnold tongues) arising from the linearised Floquet analysis.

Download