No Arabic abstract
NGC 6946, known as the Fireworks galaxy because of its high supernova rate and high star formation, is embedded in a very extended HI halo. Its northern spiral arm is well detached from the galactic main body. We found that this arm contains a large (~300 pc in size) Red Ellipse, named according to a strong contamination of the H-alpha emission line on its optical images. The ellipse is accompanied by a short parallel arc and a few others still smaller and less regular; a bright star cluster is seen inside these features. The complicated combination of arcs seems to be unique, it is only a bit similar to some SNRs. However, the long-slit spectral data obtained with the Russian 6-m telescope did not confirm the origin of the nebula as a result of a single SN outburst. The emission-line spectrum corresponds to the photoionization by young hot stars with a small contribution of shock ionization. The most likely explanation of the Red Ellipse is a superbbuble created by a collective feedback of massive stars in the star cluster located in the NE side of the Red Ellipse. However, the very regular elliptical shape of the nebulae seems strange.
We present a far-UV (FUV) study of the star-forming complexes (SFCs) in three nearby galaxies using the Ultraviolet Imaging Telescope (UVIT). The galaxies are close to face-on and show significant outer disk star formation. Two of them are isolated (NGC 628, NGC 6946), and one is interacting with distant companions (NGC 5457). We compared the properties of the SFCs inside and outside the optical radius (R$_{25}$). We estimated the sizes, star formation rates (SFRs), metallicities, and the Toomre Q parameter of the SFCs. We find that the outer disk SFCs are at least ten times smaller in area than those in the inner disk. The SFR per unit area ($Sigma_{SFR}$) in both regions have similar mean values, but the outer SFCs have a much smaller range of $Sigma_{SFR}$. They are also metal-poor compared to the inner disk SFCs. The FUV emission is well correlated with the neutral hydrogen gas (HI) distribution and is detected within and near several HI~holes. Our estimation of the Q parameter in the outer disks of the two isolated galaxies suggests that their outer disks are stable (Q$>$1). However, their FUV images indicate that there is ongoing star formation in these regions. This suggests that there may be some non-luminous mass or dark matter in their outer disks, which increases the disk surface density and supports the formation of local gravitational instabilities. In the interacting galaxy, NGC 5457, the baryonic surface density is sufficient (Q$<$1) to trigger local disk instabilities in the outer disk.
Star formation induced by a spiral shock wave, which in turn is generated by a spiral density wave, produces an azimuthal age gradient across the spiral arm, which has opposite signs on either side of the corotational resonance. An analysis of the spatial separation between young star clusters and nearby HII regions made it possible to determine the position of the corotation radius in the studied galaxies. Fourier analysis of the gas velocity field in the same galaxies independently confirmed the corotation radius estimates obtained by the morphological method presented here.
We have analysed SCUBA 850mum images of the (near) face-on spiral galaxy NGC 6946, and found a tight correlation between dust thermal emission and molecular gas. The map of visual optical depth relates well to the distribution of neutral gas (HI+H2) and implies a global gas-to-dust ratio of 90. There is no significant radial variation of this ratio: this can be understood, since the gas content is dominated by far by the molecular gas. The latter is estimated through the CO emission tracer, which is itself dependent on metallicity, similarly to dust emission. By comparing the radial profile of our visual optical depth map with that of the SCUBA image, we infer an emissivity (dust absorption coefficient) at 850mum that is 3 times lower than the value measured by COBE in the Milky Way, and 9 times lower than in NGC 891. A decomposition of the spiral structure half way out along the disk of NGC 6946 suggests an interarm optical depth of between 1 and 2. These surprisingly high values represent 40-80% of the visual opacity that we measure for the arm region (abridged).
We present 21-cm observations and models of the HI kinematics and distribution of NGC 4244, a nearby edge-on Scd galaxy observed as part of the Westerbork Hydrogen Accretion in LOcal GAlaxieS (HALOGAS) survey. Our models give insight into the HI kinematics and distribution with an emphasis on the potential existence of extra-planar gas as well as a negative gradient in rotational velocity with height above the plane of the disk (a lag). Our models yield strong evidence against a significantly extended halo and instead favor a warp component along the line of sight as an explanation for some of the observed thickening of the disk. Based on these models, we detect a lag of -9 +3/-2 km s-1 kpc-1 in the approaching half and -9 +/-2 km s-1 kpc-1 in the receding half. This lag decreases in magnitude to -5+/-2 km s-1 kpc-1 and -4+/-2 km s-1 kpc-1 near a radius of 10 kpc in the approaching and receding halves respectively. Additionally, we detect several distinct morphological and kinematic features including a shell that is probably driven by star formation within the disk.
We present 21-cm observations and models of the neutral hydrogen in NGC 4565, a nearby, edge-on spiral galaxy, as part of the Westerbork Hydrogen Accretion in LOcal GAlaxieS (HALOGAS) survey. These models provide insight concerning both the morphology and kinematics of HI above, as well as within, the disk. NGC 4565 exhibits a distinctly warped and asymmetric disk with a flaring layer. Our modeling provides no evidence for a massive, extended HI halo. We see evidence for a bar and associated radial motions. Additionally, there are indications of radial motions within the disk, possibly associated with a ring of higher density. We see a substantial decrease in rotational velocity with height above the plane of the disk (a lag) of -40 +5/-20 km/s/kpc and -30 +5/-30 km s/kpc in the approaching and receding halves, respectively. This lag is only seen within the inner ~4.75 (14.9 kpc) on the approaching half and ~4.25 (13.4 kpc) on the receding, making this a radially shallowing lag, which is now seen in the HI layers of several galaxies. When comparing results for NGC 4565 and those for other galaxies, there are tentative indications of high star formation rate per unit area being associated with the presence of a halo. Finally, HI is found in two companion galaxies, one of which is clearly interacting with NGC 4565.