No Arabic abstract
Recently, with the availability of various traffic datasets, human mobility has been studied in different contexts. Researchers attempt to understand the collective behaviors of human movement with respect to the spatio-temporal distribution in traffic dynamics, from which a gravitational scaling law characterizing the relation between the traffic flow, population and distance has been found. However, most studies focus on the integrated properties of gravitational scaling, neglecting its dynamical evolution during different hours of a day. Investigating the hourly traffic flow data of Beijing subway network, based on the hop-count distance of passengers, we find that the scaling exponent of the gravitational law is smaller in Beijing subway system compared to that reported in Seoul subway system. This means that traffic demand in Beijing is much stronger and less sensitive to the travel distance. Furthermore, we analyzed the temporal evolution of the scaling exponents in weekdays and weekends. Our findings may help to understand and improve the traffic congestion control in different subway systems.
The master equation approach is proposed to describe the evolution of passengers in a subway system. With the transition rate constructed from simple geographical consideration, the evolution equation for the distribution of subway passengers is found to bear skew distributions including log-normal, Weibull, and power-law distributions. This approach is then applied to the Metropolitan Seoul Subway system: Analysis of the trip data of all passengers in a day reveals that the data in most cases fit well to the log-normal distributions. Implications of the results are also discussed.
Background: Zipfs law and Heaps law are two representatives of the scaling concepts, which play a significant role in the study of complexity science. The coexistence of the Zipfs law and the Heaps law motivates different understandings on the dependence between these two scalings, which is still hardly been clarified. Methodology/Principal Findings: In this article, we observe an evolution process of the scalings: the Zipfs law and the Heaps law are naturally shaped to coexist at the initial time, while the crossover comes with the emergence of their inconsistency at the larger time before reaching a stable state, where the Heaps law still exists with the disappearance of strict Zipfs law. Such findings are illustrated with a scenario of large-scale spatial epidemic spreading, and the empirical results of pandemic disease support a universal analysis of the relation between the two laws regardless of the biological details of disease. Employing the United States(U.S.) domestic air transportation and demographic data to construct a metapopulation model for simulating the pandemic spread at the U.S. country level, we uncover that the broad heterogeneity of the infrastructure plays a key role in the evolution of scaling emergence. Conclusions/Significance: The analyses of large-scale spatial epidemic spreading help understand the temporal evolution of scalings, indicating the coexistence of the Zipfs law and the Heaps law depends on the collective dynamics of epidemic processes, and the heterogeneity of epidemic spread indicates the significance of performing targeted containment strategies at the early time of a pandemic disease.
Improved mobility not only contributes to more intensive human activities but also facilitates the spread of communicable disease, thus constituting a major threat to billions of urban commuters. In this study, we present a multi-city investigation of communicable diseases percolating among metro travelers. We use smart card data from three megacities in China to construct individual-level contact networks, based on which the spread of disease is modeled and studied. We observe that, though differing in urban forms, network layouts, and mobility patterns, the metro systems of the three cities share similar contact network structures. This motivates us to develop a universal generation model that captures the distributions of the number of contacts as well as the contact duration among individual travelers. This model explains how the structural properties of the metro contact network are associated with the risk level of communicable diseases. Our results highlight the vulnerability of urban mass transit systems during disease outbreaks and suggest important planning and operation strategies for mitigating the risk of communicable diseases.
The Metropolitan Seoul Subway system, consisting of 380 stations, provides the major transportation mode in the metropolitan Seoul area. Focusing on the network structure, we analyze statistical properties and topological consequences of the subway system. We further study the passenger flows on the system, and find that the flow weight distribution exhibits a power-law behavior. In addition, the degree distribution of the spanning tree of the flows also follows a power law.
The concept of nestedness, in particular for ecological and economical networks, has been introduced as a structural characteristic of real interacting systems. We suggest that the nestedness is in fact another way to express a mesoscale network property called the core-periphery structure. With real ecological mutualistic networks and synthetic model networks, we reveal the strong correlation between the nestedness and core-periphery-ness (likeness to the core-periphery structure), by defining the network-level measures for nestedness and core-periphery-ness in the case of weighted and bipartite networks. However, at the same time, via more sophisticated null-model analysis, we also discover that the degree (the number of connected neighbors of a node) distribution poses quite severe restrictions on the possible nestedness and core-periphery parameter space. Therefore, there must exist structurally interwoven properties in more fundamental levels of network formation, behind this seemingly obvious relation between nestedness and core-periphery structures.