Do you want to publish a course? Click here

The ISLAndS project II: The Lifetime Star Formation Histories of Six Andromeda dSphs

73   0   0.0 ( 0 )
 Added by Evan D. Skillman
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Initial Star formation and Lifetimes of Andromeda Satellites (ISLAndS) project uses Hubble Space Telescope imaging to study a representative sample of six Andromeda dSph satellite companion galaxies. The main goal of the program is to determine whether the star formation histories (SFHs) of the Andromeda dSph satellites demonstrate significant statistical differences from those of the Milky Way, which may be attributable to the different properties of their local environments. Our observations reach the oldest main sequence turn-offs, allowing a time resolution at the oldest ages of ~ 1 Gyr, which is comparable to the best achievable resolution in the MW satellites. We find that the six dSphs present a variety of SFHs that are not strictly correlated with luminosity or present distance from M31. Specifically, we find a significant range in quenching times (lookback times from 9 to 6 Gyr), but with all quenching times more than ~ 6 Gyr ago. In agreement with observations of Milky Way companions of similar mass, there is no evidence of complete quenching of star formation by the cosmic UV background responsible for reionization, but the possibility of a degree of quenching at reionization cannot be ruled out. We do not find significant differences between the SFHs of the three members of the vast, thin plane of satellites and the three off-plane dSphs. The primary difference between the SFHs of the ISLAndS dSphs and Milky Way dSph companions of similar luminosities and host distances is the absence of very late quenching (< 5 Gyr ago) dSphs in the ISLAndS sample. Thus, models that can reproduce satellite populations with and without late quenching satellites will be of extreme interest.



rate research

Read More

We present a census of variable stars in six M31 dwarf spheroidal satellites observed with the Hubble Space Telescope. We detect 870 RR Lyrae (RRL) stars in the fields of And I (296), II (251), III (111), XV (117), XVI (8), XXVIII (87). We also detect a total of 15 Anomalous Cepheids, three Eclipsing Binaries, and seven field RRL stars compatible with being members of the M31 halo or the Giant Stellar Stream. We derive robust and homogeneous distances to the six galaxies using different methods based on the properties of the RRL stars. Working with the up-to-date set of Period-Wesenheit ($I$, $B$ - $I$) relations published by Marconi et al., we obtain distance moduli of $mu_0$ = [24.49, 24.16, 24.36, 24.42, 23.70, 24.43] mag (respectively), with systematic uncertainties of 0.08 mag and statistical uncertainties $<$ 0.11 mag. We have considered an enlarged sample of sixteen M31 satellites with published variability studies, and compared their pulsational observables (e.g., periods, amplitudes), with those of fifteen Milky Way satellites for which similar data are available. The properties of the (strictly old) RRL in both satellite systems do not show any significant difference. In particular, we found a strikingly similar correlation between the mean period distribution of the fundamental RRL pulsators (RRab) and the mean metallicities of the galaxies. This indicates that the old RRL progenitors were similar at the early stage in the two environments, suggesting very similar characteristics for the earliest stages of evolution of both satellite systems.
We present the first comparison between the lifetime star formation histories (SFHs) of M31 and Milky Way (MW) satellites. Using the Advanced Camera for Surveys aboard the Hubble Space Telescope, we obtained deep optical imaging of Andromeda II (M$_{V} = -$12.0; log(M$_{star}$/M$_{odot}$) $sim$ 6.7) and Andromeda XVI (M$_{V} = -$7.5; log(M$_{star}$/M$_{odot}$) $sim$ 4.9) yielding color-magnitude diagrams that extend at least 1 magnitude below the oldest main sequence turnoff, and are similar in quality to those available for the MW companions. And II and And XVI show strikingly similar SFHs: both formed 50-70% of their total stellar mass between 12.5 and 5 Gyr ago (z$sim$5-0.5) and both were abruptly quenched $sim$ 5 Gyr ago (z$sim$0.5). The predominance of intermediate age populations in And XVI makes it qualitatively different from faint companions of the MW and clearly not a pre-reionization fossil. Neither And II nor And XVI appears to have a clear analog among MW companions, and the degree of similarity in the SFHs of And II and And XVI is not seen among comparably faint-luminous pairs of MW satellites. These findings provide hints that satellite galaxy evolution may vary substantially among hosts of similar stellar mass. Although comparably deep observations of more M31 satellites are needed to further explore this hypothesis, our results underline the need for caution when interpreting satellite galaxies of an individual system in a broader cosmological context.
The majority of spiral and elliptical galaxies in the Universe host very dense and compact stellar systems at their centres known as nuclear star clusters (NSCs). In this work we study the stellar populations and star formation histories (SFH) of the NSCs of six nearby galaxies with stellar masses ranging between $2$ and $8times10^9~{rm M_{odot}}$ (four late-type spirals and two early-types) with high resolution spectroscopy. Our observations are taken with the X-Shooter spectrograph at the VLT. We make use of an empirical simple stellar population (SSP) model grid to fit composite stellar populations to the data and recover the SFHs of the nuclei. We find that the nuclei of all late-type galaxies experienced a prolonged SFH, while the NSCs of the two early-types are consistent with SSPs. The NSCs in the late-type galaxies sample appear to have formed a significant fraction of their stellar mass already more than $10$ Gyr ago, while the NSCs in the two early-type galaxies are surprisingly younger. Stars younger than $100$ Myr are present in at least two nuclei: NGC 247 and NGC 7793, with some evidence for young star formation in NGC 300s NSC. The NSCs of the spirals NGC 247 and NGC 300 are consistent with prolonged in situ star formation with a gradual metallicity enrichment from $sim-1.5$ dex more than $10$ Gyr ago, reaching super-Solar values few hundred Myr ago. NGC 3621 appears to be very metal rich already in the early Universe and NGC 7793 presents us with a very complex SFH, likely dominated by merging of various massive star clusters coming from different environments.
We present a detailed study of the Magellanic irregular galaxy NGC 4449 based on both archival and new photometric data from the Legacy Extragalactic UV Survey, obtained with the Hubble Space Telescope Advanced Camera for Surveys and Wide Field Camera 3. Thanks to its proximity ($D=3.82pm 0.27$ Mpc) we reach stars 3 magnitudes fainter than the tip of the red giant branch in the F814W filter. The recovered star formation history spans the whole Hubble time, but due to the age-metallicity degeneracy of the red giant branch stars, it is robust only over the lookback time reached by our photometry, i.e. $sim 3$ Gyr. The most recent peak of star formation is around 10 Myr ago. The average surface density star formation rate over the whole galaxy lifetime is $0.01$ M$_{odot}$ yr$^{-1}$ kpc$^{-2}$. From our study it emerges that NGC 4449 has experienced a fairly continuous star formation regime in the last 1 Gyr with peaks and dips whose star formation rates differ only by a factor of a few. The very complex and disturbed morphology of NGC 4449 makes it an interesting galaxy for studies of the relationship between interactions and starbursts, and our detailed and spatially resolved analysis of its star formation history does indeed provide some hints on the connection between these two phenomena in this peculiar dwarf galaxy.
Different processes have been proposed to explain the formation of S0s, including mergers, disc instabilities and quenched spirals. These processes are expected to dominate in different environments, and thus leave characteristic footprints in the kinematics and stellar populations of the individual components within the galaxies. New techniques enable us to cleanly disentangle the kinematics and stellar populations of these components in IFU observations. In this paper, we use buddi to spectroscopically extract the light from the bulge, disc and lens components within a sample of 8 S0 galaxies in extreme environments observed with MUSE. While the spectra of bulges and discs in S0 galaxies have been separated before, this work is the first to isolate the spectra of lenses. Stellar populations analysis revealed that the bulges and lenses have generally similar or higher metallicities than the discs, and the $alpha$-enhancement of the bulges and discs are correlated, while those of the lenses are completely unconnected to either component. We conclude that the majority of the mass in these galaxies was built up early in the lifetime of the galaxy, with the bulges and discs forming from the same material through dissipational processes at high redshift. The lenses, on the other hand, formed over independent timescales at more random times within the lifetime of the galaxy, possibly from evolved bars. The younger stellar populations and asymmetric features seen in the field S0s may indicate that these galaxies have been affected more by minor mergers than the cluster galaxies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا