Do you want to publish a course? Click here

Tapered amplifier laser with frequency-shifted feedback

57   0   0.0 ( 0 )
 Added by Alex Bayerle
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a frequency-shifted feedback (FSF) laser based on a tapered amplifier. The laser operates as a coherent broadband source with up to 370GHz spectral width and 2.3us coherence time. If the FSF laser is seeded by a continuous-wave laser a frequency comb spanning the output spectrum appears in addition to the broadband emission. The laser has an output power of 280mW and a center wavelength of 780nm. The ease and flexibility of use of tapered amplifiers makes our FSF laser attractive for a wide range of applications, especially in metrology.



rate research

Read More

We report on the phase-locking of two diode lasers based on self-seeded tapered amplifiers. In these lasers, a reduction of linewidth is achieved using narrow-band high-transmission interference filters for frequency selection. The lasers combine a compact design with a Lorentzian linewidth below 200 kHz at an output power of 300 mW. We characterize the phase noise of the phase-locked laser system and study its potential for coherent beam-splitting in atom interferometers.
A technique is proposed to generate attosecond pulse trains of radiation from a Free-Electron Laser amplifier. The optics-free technique synthesises a comb of longitudinal modes by applying a series of spatio-temporal shifts between the co-propagating radiation and electron bunch in the FEL. The modes may be phase-locked by modulating the electron beam energy at the mode spacing frequency. Three-dimensional simulations demonstrate the generation of a train of 400as pulses at giga-watt power levels evenly spaced by 2.5fs at a wavelength of 124 Angstrom. In the X-ray at wavelength 1.5 Angstrom, trains of 23as pulses evenly spaced by 150as and of peak power up to 6GW are predicted.
We demonstrate a combination of optical and electronic feedback that significantly narrows the linewidth of distributed Bragg reflector lasers (DBRs). We use optical feedback from a long external fiber path to reduce the high-frequency noise of the laser. An electro-optic modulator placed inside the optical feedback path allows us to apply electronic feedback to the laser frequency with very large bandwidth, enabling robust and stable locking to a reference cavity that suppresses low-frequency components of laser noise. The combination of optical and electronic feedback allows us to significantly lower the frequency noise power spectral density of the laser across all frequencies and narrow its linewidth from a free-running value of 1.1 MHz to a stabilized value of 1.9 kHz, limited by the detection system resolution. This approach enables the construction of robust lasers with sub-kHz linewidth based on DBRs across a broad range of wavelengths.
Time-delayed differential equations arise frequently in the study of nonlinear dynamics of lasers with optical feedback. Traditionally, one has resorted to numerical methods because the analytical solution of such equations are intractable. In this manuscript, we show that under some conditions, the rate equations model that is used to model semiconductor lasers with feedback can be analytically solved by using the Lambert W function. In particular, we discuss the conditions under which the coupled rate equations for the intra-cavity electric field and excess carrier inversion can be reduced to a single equation for the field, and how this single rate equation can be cast in a form that is amenable to the use of the Lambert W function. We conclude the manuscript with a similar discussion for two lasers coupled via time-delayed feedbacks.
We develop a green light source with low spatial coherence via intracavity frequency doubling of a solid-state degenerate laser. The second harmonic emission supports many more transverse modes than the fundamental emission, and exhibit lower spatial coherence. A strong suppression of speckle formation is demonstrated for both fundamental and second harmonic beams. Using the green emission for fluorescence excitation, we show the coherent artifacts are removed from the full-field fluorescence images. The high power, low spatial coherence and good directionality makes the green degenerate laser an attractive illumination source for parallel imaging and projection display.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا