Fully gapped superconductivity in the topological superconductor beta-PdBi2


Abstract in English

The recent discovery of the topologically protected surface states in the beta-phase of PdBi2 has reignited the research interest in this class of superconductors. Here, we show results of our muon spin relaxation and rotation (muSR) measurements carried out to investigate the superconducting and magnetic properties and the topological effect in the superconducting ground state of beta-PdBi2. Zero-field muSR data reveal that no sizeable spontaneous magnetization arises with the onset of superconductivity implying that the time reversal symmetry is preserved in the superconducting state of beta-PdBi2. Further, a strong diamagnetic shift of the applied field has been observed in the transverse-field (TF) muSR experiments, indicating that any triplet-pairing channel, if present, does not dominate the superconducting condensate. Using TF-muSR, we estimate that the magnetic penetration depth is 263(10) nm at zero temperature. Temperature dependence of the magnetic penetration depth provides evidence for the existence of a nodeless single s-wave type isotropic energy gap of 0.78(1) meV at zero temperature. Our results further suggest that the topologically protected surface states have no effect on the bulk of the superconductor.

Download