Do you want to publish a course? Click here

Effect of a skin-deep surface zone on formation of two-dimensional electron gas at a semiconductor surface

72   0   0.0 ( 0 )
 Added by Jakub Lis
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Two dimensional electron gases (2DEGs) at surfaces and interfaces of semiconductors are described straightforwardly with a 1D self-consistent Poisson-Schr{o}dinger scheme. However, their band energies have not been modeled correctly in this way. Using angle-resolved photoelectron spectroscopy we study the band structures of 2DEGs formed at sulfur-passivated surfaces of InAs(001) as a model system. Electronic properties of these surfaces are tuned by changing the S coverage, while keeping a high-quality interface, free of defects and with a constant doping density. In contrast to earlier studies we show that the Poisson-Schr{o}dinger scheme predicts the 2DEG bands energies correctly but it is indispensable to take into account the existence of the physical surface. The surface substantially influences the band energies beyond simple electrostatics, by setting nontrivial boundary conditions for 2DEG wavefunctions.



rate research

Read More

In this work, we find by means of first principle calculations a new physical mechanism to generate a two dimensional electron gas, namely, the breaking of charge ordering at the surface of a charge ordered semiconductor due to the incomplete oxygen environment of the surface ions. The emergence of the 2D gas is independent of the presence of oxygen vacancies or polar discontinuities; this is a self-doping effect. This mechanism might apply to many charge ordered systems, in particular, we study the case of BaBiO3(001). In bulk, this material is a prototype of a forbidden valence compound in which the formal metallic Bi4+ state is skipped exhibiting a charge disproportionated Bi3+ - Bi5+ ordered structure. At room temperature, this charge disproportionation together with the breathing distortions gives rise to a Peierls semiconductor with monoclinic crystal structure. At higher temperature (T > 750 K) or upon doping, it turns cubic and metallic. Interestingly, doped BaBiO3 was one of the first non-cuprate high-Tc superconductors discovered. The outer layer of the Bi-terminated simulated surface turns more cubic- like and metallic while the inner layers remain in the insulating monoclinic state. On the other hand, the metallization does not occur for the Ba termination, a fact that makes this system appealing for nanostructuring. Finally, this finding sets another possible route for future exploration: the potential scenario of 2D superconductivity at the BaBiO3 surface.
A giant asymmetry in the magnetoresistance was revealed in high-mobility, two-dimensional electron gas on a cylindrical surface. The longitudinal resistance along the magnetic-field gradient impressed by the surface curvature was found to vanish if measured along one of the edges of the curved Hall bar. If the external magnetic field is reversed, then the longitudinal resistance vanishes at the opposite edge of the Hall bar. This asymmetry is analyzed quantitatively in terms of the Landauer-Buettiker formalism.
Similar to silicon that is the basis of conventional electronics, strontium titanate (SrTiO3) is the bedrock of the emerging field of oxide electronics. SrTiO3 is the preferred template to create exotic two-dimensional (2D) phases of electron matter at oxide interfaces, exhibiting metal-insulator transitions, superconductivity, or large negative magnetoresistance. However, the physical nature of the electronic structure underlying these 2D electron gases (2DEGs) remains elusive, although its determination is crucial to understand their remarkable properties. Here we show, using angle-resolved photoemission spectroscopy (ARPES), that there is a highly metallic universal 2DEG at the vacuum-cleaved surface of SrTiO3, independent of bulk carrier densities over more than seven decades, including the undoped insulating material. This 2DEG is confined within a region of ~5 unit cells with a sheet carrier density of ~0.35 electrons per a^2 (a is the cubic lattice parameter). We unveil a remarkable electronic structure consisting on multiple subbands of heavy and light electrons. The similarity of this 2DEG with those reported in SrTiO3-based heterostructures and field-effect transistors suggests that different forms of electron confinement at the surface of SrTiO3 lead to essentially the same 2DEG. Our discovery provides a model system for the study of the electronic structure of 2DEGs in SrTiO3-based devices, and a novel route to generate 2DEGs at surfaces of transition-metal oxides.
Studies on oxide quasi-two dimensional electron gas (q2DEG) have been a playground for the discovery of novel and sometimes unexpected phenomena, like the reported magnetism at the surface and at the interface between LaAlO$_{3}$ and SrTiO$_{3}$ non-magnetic materials. However, magnetism in this system is weak and there are evidences of a not intrinsic origin. Here, by using in-situ high-resolution angle resolved photoemission we demonstrate that ferromagnetic EuTiO$_{3}$, the magnetic counterpart of SrTiO$_{3}$ in the bulk, hosts a q2DEG at its (001) surface. This is confirmed by density functional theory calculations with Hubbard U terms in the presence of oxygen divacancies in various configurations, all of them leading to a spin-polarized q2DEG related to the ferromagnetic order of Eu-4f magnetic moments. The results suggest EuTiO$_{3}$(001) as a new material platform for oxide q2DEGs, characterized by broken inversion and time reversal symmetries.
219 - R. Raimondi , P. Schwab 2009
We provide a theoretical framework for the electric field control of the electron spin in systems with diffusive electron motion. The approach is valid in the experimentally important case where both intrinsic and extrinsic spin-orbit interaction in a two-dimensional electron gas are present simultaneously. Surprisingly, even when the extrinsic mechanism is the dominant driving force for spin Hall currents, the amplitude of the spin Hall conductivity may be considerably tuned by varying the intrinsic spin-orbit coupling via a gate voltage. Furthermore we provide an explanation of the experimentally observed out-of-plane spin polarization in a (110) GaAs quantum well.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا