We prove new upper bounds on the multicolour Ramsey numbers of paths and even cycles. It is well known that $(k-1)n+o(n)leq R_k(P_n)leq R_k(C_n)leq kn+o(n)$. The upper bound was recently improved by Sarkozy who showed that $R_k(C_n)leqleft(k-frac{k}{16k^3+1}right)n+o(n)$. Here we show $R_k(C_n) leq (k-frac14)n +o(n)$, obtaining the first improvement to the coefficient of the linear term by an absolute constant.
The Ramsey number $r(H)$ of a graph $H$ is the minimum integer $n$ such that any two-coloring of the edges of the complete graph $K_n$ contains a monochromatic copy of $H$. While this definition only asks for a single monochromatic copy of $H$, it is often the case that every two-edge-coloring of the complete graph on $r(H)$ vertices contains many monochromatic copies of $H$. The minimum number of such copies over all two-colorings of $K_{r(H)}$ will be referred to as the threshold Ramsey multiplicity of $H$. Addressing a problem of Harary and Prins, who were the first to systematically study this quantity, we show that there is a positive constant $c$ such that the threshold Ramsey multiplicity of a path or an even cycle on $k$ vertices is at least $(ck)^k$. This bound is tight up to the constant $c$. We prove a similar result for odd cycles in a companion paper.
For $ngeq s> rgeq 1$ and $kgeq 2$, write $n rightarrow (s)_{k}^r$ if every hyperedge colouring with $k$ colours of the complete $r$-uniform hypergraph on $n$ vertices has a monochromatic subset of size $s$. Improving upon previous results by textcite{AGLM14} and textcite{EHMR84} we show that [ text{if } r geq 3 text{ and } n rightarrow (s)_k^r text{ then } 2^n rightarrow (s+1)_{k+3}^{r+1}. ] This yields an improvement for some of the known lower bounds on multicolour hypergraph Ramsey numbers. Given a hypergraph $H=(V,E)$, we consider the Ramsey-like problem of colouring all $r$-subsets of $V$ such that no hyperedge of size $geq r+1$ is monochromatic. We provide upper and lower bounds on the number of colours necessary in terms of the chromatic number $chi(H)$. In particular we show that this number is $O(log^{(r-1)} (r chi(H)) + r)$.
Given a positive integer $s$, a graph $G$ is $s$-Ramsey for a graph $H$, denoted $Grightarrow (H)_s$, if every $s$-colouring of the edges of $G$ contains a monochromatic copy of $H$. The $s$-colour size-Ramsey number ${hat{r}}_s(H)$ of a graph $H$ is defined to be ${hat{r}}_s(H)=min{|E(G)|colon Grightarrow (H)_s}$. We prove that, for all positive integers $k$ and $s$, we have ${hat{r}}_s(P_n^k)=O(n)$, where $P_n^k$ is the $k$th power of the $n$-vertex path $P_n$.
Given graphs $G$ and $H$ and a positive integer $k$, the emph{Gallai-Ramsey number}, denoted by $gr_{k}(G : H)$ is defined to be the minimum integer $n$ such that every coloring of $K_{n}$ using at most $k$ colors will contain either a rainbow copy of $G$ or a monochromatic copy of $H$. We consider this question in the cases where $G in {P_{4}, P_{5}}$. In the case where $G = P_{4}$, we completely solve the Gallai-Ramsey question by reducing to the $2$-color Ramsey numbers. In the case where $G = P_{5}$, we conjecture that the problem reduces to the $3$-color Ramsey numbers and provide several results in support of this conjecture.
For a graph $H$ and an integer $kge1$, the $k$-color Ramsey number $R_k(H)$ is the least integer $N$ such that every $k$-coloring of the edges of the complete graph $K_N$ contains a monochromatic copy of $H$. Let $C_m$ denote the cycle on $mge4$ vertices and let $Theta_m$ denote the family of graphs obtained from $C_m$ by adding an additional edge joining two non-consecutive vertices. Unlike Ramsey number of odd cycles, little is known about the general behavior of $R_k(C_{2n})$ except that $R_k(C_{2n})ge (n-1)k+n+k-1$ for all $kge2$ and $nge2$. In this paper, we study Ramsey number of even cycles with chords under Gallai colorings, where a Gallai coloring is a coloring of the edges of a complete graph without rainbow triangles. For an integer $kgeq 1$, the Gallai-Ramsey number $GR_k(H)$ of a graph $H$ is the least positive integer $N$ such that every Gallai $k$-coloring of the complete graph $K_N$ contains a monochromatic copy of $H$. We prove that $GR_k(Theta_{2n})=(n-1)k+n+1$ for all $kgeq 2$ and $ngeq 3$. This implies that $GR_k(C_{2n})=(n-1)k+n+1$ all $kgeq 2$ and $ngeq 3$. Our result yields a unified proof for the Gallai-Ramsey number of all even cycles on at least four vertices.