A challenge of molecular self-assembly is to understand how to design particles that self-assemble into a desired structure and not any of a potentially large number of undesired structures. Here we use simulation to show that a strategy of minimal positive design allows the self-assembly of networks equivalent to the 8 semiregular Archimedean tilings of the plane, structures not previously realized in simulation. This strategy consists of identifying the fewest distinct types of interparticle interaction that appear in the desired structure, and does not require enumeration of the many possible undesired structures. The resulting particles, which self-assemble into the desired networks, possess DNA-like selectivity of their interactions. Assembly of certain molecular networks may therefore require such selectivity.