Do you want to publish a course? Click here

The Evolution Of The Faint End Of The UV Luminosity Function During The Peak Epoch Of Star Formation (1<z<3)

82   0   0.0 ( 0 )
 Added by Anahita Alavi
 Publication date 2016
  fields Physics
and research's language is English
 Authors Anahita Alavi




Ask ChatGPT about the research

[Abridged] We present a robust measurement of the rest-frame UV luminosity function (LF) and its evolution during the peak epoch of cosmic star formation at 1<z<3. We use our deep near ultraviolet imaging from WFC3/UVIS on the Hubble Space Telescope (HST) and existing ACS/WFC and WFC3/IR imaging of three lensing galaxy clusters, Abell 2744 and MACSJ0717 from the Hubble Frontier Field survey and Abell 1689. We use photometric redshifts to identify 780 ultra-faint galaxies with $M_{UV}$<-12.5 AB mag at 1<z<3. From these samples, we identified 5 new, faint, multiply imaged systems in A1689. We compute the rest-frame UV LF and find the best-fit faint-end slopes of $alpha=-1.56pm0.04$, $alpha=-1.72pm0.04$ and $alpha=-1.94pm0.06$ at 1.0<z<1.6, 1.6<z<2.2 and 2.2<z<3.0, respectively. Our results demonstrate that the UV LF becomes steeper from zsim1.3 to zsim2.6 with no sign of a turnover down to $M_{UV}=-14$ AB mag. We further derive the UV LFs using the Lyman break dropout selection and confirm the robustness of our conclusions against different selection methodologies. Because the sample sizes are so large, and extend to such faint luminosities, the statistical uncertainties are quite small, and systematic uncertainties (due to the assumed size distribution, for example), likely dominate. If we restrict our analysis to galaxies and volumes above > 50% completeness in order to minimize these systematics, we still find that the faint-end slope is steep and getting steeper with redshift, though with slightly shallower (less negative) values ($alpha=-1.55pm0.06$, $-1.69pm0.07$ and $-1.79pm0.08$ for $zsim1.3$, 1.9 and 2.6, respectively). Finally, we conclude that the faint star-forming galaxies with UV magnitudes of $-18.5<M_{UV}<-12.5$ covered in this study, produce the majority (55%-60%) of the unobscured UV luminosity density at 1<z<3.



rate research

Read More

Aims. We aim to study the 250 micron luminosity function (LF) down to much fainter luminosities than achieved by previous efforts. Methods. We developed a modified stacking method to reconstruct the 250 micron LF using optically selected galaxies from the SDSS survey and Herschel maps of the GAMA equatorial fields and Stripe 82. Our stacking method not only recovers the mean 250 micron luminosities of galaxies that are too faint to be individually detected, but also their underlying distribution functions. Results. We find very good agreement with previous measurements in the overlapping luminosity range. More importantly, we are able to derive the LF down to much fainter luminosities (around 25 times fainter) than achieved by previous studies. We find strong positive luminosity evolution propto (1 + z)^4.89pm1.07 and moderate negative density evolution propto (1 + z)^-1.02pm0.54 over the redshift range z=[0.02, 0.5].
110 - Casey Papovich 2019
The rest-frame UV emission from massive stars contains a wealth of information about the physical nature and conditions of star formation in galaxies. Using studies of the rest-frame UV, the past decade has witnessed the beginning of knowledge about the existence and properties of galaxies during the first few billion years after the Big Bang. This period of history corresponds to the formation of the first stars, the rapid formation of galaxy stellar populations, the reionization of the IGM, the production and dissemination of heavy elements, and the formation of the first black holes. Massive stars in these galaxies drive all of these events, and their light dominates the spectral energy distributions of galaxies. As we look to the 2020s, fundamental questions remain about the nature of these stellar populations and their evolution, from just before the peak of the cosmic star formation density (z~3), up to the epoch of reionization (z > 6). This next decade will provide transformative gains both in our ability to identify star-forming galaxies and accreting supermassive black holes at these early epochs with imaging surveys in the rest-frame UV (e.g., LSST, WFIRST). Ground-based, rest-frame UV spectroscopy on >20 m-class telescopes (e.g., GMT/TMT) offers the ability to investigate the astrophysical conditions in galaxies at the earliest cosmic times. This includes studies of the evolution in galaxy stellar populations, gas ionization (temperature, pressure), metallicity, and interstellar (and circumgalactic) gas kinematics and covering fractions. In this white paper, we describe the scientific prospects and the requirements for research in this area.
We present a model for the evolution of the galaxy ultraviolet (UV) luminosity function (LF) across cosmic time where star formation is linked to the assembly of dark matter halos under the assumption of a mass dependent, but redshift independent, efficiency. We introduce a new self-consistent treatment of the halo star formation history, which allows us to make predictions at $z>10$ (lookback time $lesssim500$ Myr), when growth is rapid. With a calibration at a single redshift to set the stellar-to-halo mass ratio, and no further degrees of freedom, our model captures the evolution of the UV LF over all available observations ($0lesssim zlesssim10$). The significant drop in luminosity density of currently detectable galaxies beyond $zsim8$ is explained by a shift of star formation toward less massive, fainter galaxies. Assuming that star formation proceeds down to atomic cooling halos, we derive a reionization optical depth $tau = 0.056^{+0.007}_{-0.010}$, fully consistent with the latest Planck measurement, implying that the universe is fully reionized at $z=7.84^{+0.65}_{-0.98}$. In addition, our model naturally produces smoothly rising star formation histories for galaxies with $Llesssim L_*$ in agreement with observations and hydrodynamical simulations. Before the epoch of reionization at $z>10$ we predict the LF to remain well-described by a Schechter function, but with an increasingly steep faint-end slope ($alphasim-3.5$ at $zsim16$). Finally, we construct forecasts for surveys with JWST~and WFIRST and predict that galaxies out to $zsim14$ will be observed. Galaxies at $z>15$ will likely be accessible to JWST and WFIRST only through the assistance of strong lensing magnification.
120 - Eilat Glikman 2009
We have conducted a spectroscopic survey to find faint quasars (-26.0 < M_{1450} < -22.0) at redshifts z=3.8-5.2 in order to measure the faint end of the quasar luminosity function at these early times. Using available optical imaging data from portions of the NOAO Deep Wide-Field Survey and the Deep Lens Survey, we have color-selected quasar candidates in a total area of 3.76 deg^2. Thirty candidates have R <= 23 mags. We conducted spectroscopic followup for 28 of our candidates and found 23 QSOs, 21 of which are reported here for the first time, in the 3.74 < z <5.06 redshift range. We estimate our survey completeness through detailed Monte Carlo simulations and derive the first measurement of the density of quasars in this magnitude and redshift interval. We find that the binned luminosity function is somewhat affected by the K-correction used to compute the rest-frame absolute magnitude at 1450A. Considering only our R <= 23 sample, the best-fit single power-law (Phi propto L^beta) gives a faint-end slope beta = -1.6+/-0.2. If we consider our larger, but highly incomplete sample going one magnitude fainter, we measure a steeper faint-end slope -2 < beta < -2.5. In all cases, we consistently find faint-end slopes that are steeper than expected based on measurements at z ~ 3. We combine our sample with bright quasars from the Sloan Digital Sky Survey to derive parameters for a double-power-law luminosity function. Our best fit finds a bright-end slope, alpha = -2.4+/-0.2, and faint-end slope, beta = -2.3+/-0.2, without a well-constrained break luminosity. This is effectively a single power-law, with beta = -2.7+/-0.1. We use these results to place limits on the amount of ultraviolet radiation produced by quasars and find that quasars are able to ionize the intergalactic medium at these redshifts.
84 - D. Crnojevic 2018
The Panoramic Imaging Survey of Centaurus and Sculptor (PISCeS) is constructing a wide-field map of the resolved stellar populations in the extended halos of these two nearby, prominent galaxies. We present new Magellan/Megacam imaging of a $sim3$ deg$^2$ area around Centaurus A (Cen A), which filled in much of our coverage to its south, leaving a nearly complete halo map out to a projected radius of $sim$150 kpc and allowing us to identify two new resolved dwarf galaxies. We have additionally obtained deep Hubble Space Telescope (HST) optical imaging of eleven out of the thirteen candidate dwarf galaxies identified around Cen A and presented in Crnojevic et al. (2016): seven are confirmed to be satellites of Cen A, while four are found to be background galaxies. We derive accurate distances, structural parameters, luminosities and photometric metallicities for the seven candidates confirmed by our HST/ACS imaging. We further study the stellar population along the $sim$60 kpc long (in projection) stream associated with Dw3, which likely had an initial brightness of $M_{V}$$sim$$-$15 and shows evidence for a metallicity gradient along its length. Using the total sample of eleven dwarf satellites discovered by the PISCeS survey, as well as thirteen brighter previously known satellites of Cen A, we present a revised galaxy luminosity function for the Cen A group down to a limiting magnitude of $M_Vsim-8$, which has a slope of $-1.14pm0.17$, comparable to that seen in the Local Group and in other nearby groups of galaxies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا