Do you want to publish a course? Click here

The Radio Jet Associated with the Multiple V380 Ori System

73   0   0.0 ( 0 )
 Added by Luis F. Rodriguez
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The giant Herbig-Haro object 222 extends over $sim$6$$ in the plane of the sky, with a bow shock morphology. The identification of its exciting source has remained uncertain over the years. A non-thermal radio source located at the core of the shock structure was proposed to be the exciting source. However, Very Large Array studies showed that the radio source has a clear morphology of radio galaxy and a lack of flux variations or proper motions, favoring an extragalactic origin. Recently, an optical-IR study proposed that this giant HH object is driven by the multiple stellar system V380 Ori, located about 23$$ to the SE of HH 222. The exciting sources of HH systems are usually detected as weak free-free emitters at centimeter wavelengths. Here we report the detection of an elongated radio source associated with the Herbig Be star or with its close infrared companion in the multiple V380 Ori system. This radio source has the characteristics of a thermal radio jet and is aligned with the direction of the giant outflow defined by HH~222 and its suggested counterpart to the SE, HH~1041. We propose that this radio jet traces the origin of the large scale HH outflow. Assuming that the jet arises from the Herbig Be star, the radio luminosity is a few times smaller than the value expected from the radio-bolometric correlation for radio jets, confirming that this is a more evolved object than those used to establish the correlation.



rate research

Read More

646 - E. Alecian 2009
In this paper we report the results of high-resolution circular spectropolarimetric monitoring of the Herbig Ae star V380 Ori, in which we discovered a magnetic field in 2005. A careful study of the intensity spectrum reveals the presence of a cool spectroscopic companion. By modelling the binary spectrum we infer the effective temperature of both stars: $10500pm 500$ K for the primary, and $5500pm500$ K for the secondary, and we argue that the high metallicity ($[M/H] = 0.5$), required to fit the lines may imply that the primary is a chemically peculiar star. We observe that the radial velocity of the secondarys lines varies with time, while that of the the primary does not. By fitting these variations we derive the orbital parameters of the system. We find an orbital period of $104pm5$ d, and a mass ratio ($M_{rm P}/M_{rm S}$) larger than 2.9. The intensity spectrum is heavily contaminated with strong, broad and variable emission. A simple analysis of these lines reveals that a disk might surround the binary, and that a wind occurs in the environment of the system. Finally, we performed a magnetic analysis using the Least-Squares Deconvolved (LSD) profiles of the Stokes $V$ spectra of both stars, and adopting the oblique rotator model. From rotational modulation of the primarys Stokes $V$ signatures, we infer its rotation period $P=4.31276pm0.00042$ d, and find that it hosts a centred dipole magnetic field of polar strength $2.12pm0.15$ kG, with a magnetic obliquity $beta = 66pm5^{circ}$, and a rotation axis inclination $i=32pm5^{circ}$. However, no magnetic field is detected in the secondary, and if it hosts a dipolar magnetic field, its strength must be below about 500 G, to be consistent with our observations.
The V380 Ori NE bipolar outflow was imaged in the SiO and CO J = 1 - 0 lines, and dense cores in L1641 were observed in the 2.0-0.89 mm continuum. The highly collimated SiO jet shows point-symmetric oscillation patterns in both position and velocity, which suggests that the jet axis is precessing and the driving source may belong to a non-coplanar binary system. By considering the position and velocity variabilities together, accurate jet parameters were derived. The protostellar system is viewed nearly edge-on, and the jet has a flow speed of 35 km/s and a precession period of 1600 years. The CO outflow length gives a dynamical timescale of 6300 years, and the protostar must be extremely young. The inferred binary separation of 6-70 au implies that this protobinary system may have been formed through the disk instability process. The continuum spectra of L1641 dense cores indicate that the emission comes from dust, and the fits with modified blackbody functions give emissivity power indices of beta = 0.3-2.2. The emissivity index shows a positive correlation with the molecular line width, but no strong correlation with bolometric luminosity or temperature. V380 Ori NE has a particularly low value of beta = 0.3, which tentatively suggests the presence of millimeter-sized dust grains. Because the dust growth takes millions of years, much longer than the protostellar age, this core may have produced large grains in the starless core stage. HH 34 MMS and HH 147 MMS also have low emissivity indices.
Centimeter continuum observations of protostellar jets have revealed the presence of knots of shocked gas where the flux density decreases with frequency. This spectrum is characteristic of nonthermal synchrotron radiation and implies the presence of both magnetic fields and relativistic electrons in protostellar jets. Here, we report on one of the few detections of nonthermal jet driven by a young massive star in the star-forming region G035.02$+$0.35. We made use of the NSFs Karl G. Jansky Very Large Array (VLA) to observe this region at C, Ku, and K bands with the A- and B-array configurations, and obtained sensitive radio continuum maps down to a rms of 10 $mu$Jy beam$^{-1}$. These observations allow for a detailed spectral index analysis of the radio continuum emission in the region, which we interpret as a protostellar jet with a number of knots aligned with extended 4.5 $mu$m emission. Two knots clearly emit nonthermal radiation and are found at similar distances, of approximately 10,000 au, each side of the central young star, from which they expand at velocities of hundreds km s$^{-1}$. We estimate both the mechanical force and the magnetic field associated with the radio jet, and infer a lower limit of $0.4times10^{-4} $M$_{odot}$ yr$^{-1}$ km s$^{-1}$ and values in the range $0.7-1.3 $mG, respectively.
FU Orionis objects are low-mass pre-main sequence stars characterized by dramatic outbursts of several magnitudes in brightness. These outbursts are linked to episodic accretion events in which stars gain a significant portion of their mass. The physical processes behind these accretion events are not yet well understood. The archetypical FU Ori system, FU Orionis, is composed of two young stars with detected gas and dust emission. The continuum emitting regions have not been resolved until now. Here, we present 1.3 mm observations of the FU Ori binary system with ALMA. The disks are resolved at 40 mas resolution. Radiative transfer modeling shows that the emission from FU Ori north (primary) is consistent with a dust disk with a characteristic radius of $sim$11 au. The ratio between major and minor axes shows that the inclination of the disk is $sim$37 deg. FU Ori south is consistent with a dust disk of similar inclination and size. Assuming the binary orbit shares the same inclination angle as the disks, the deprojected distance between north and south components is 0.6, i.e. $sim$250 au. Maps of $^{12}$CO emission show a complex kinematic environment with signatures disk rotation at the location of the northern component, and also (to a lesser extent) for FU Ori south. The revised disk geometry allows us to update FU Ori accretion models (Zhu et al.), yielding a stellar mass and mass accretion rate of FU Ori north of 0.6 M$_{odot}$ and 3.8$times10^{-5}$ M$_{odot}$ yr$^{-1}$, respectively.
We present high angular resolution, high sensitivity 8.46 GHz (3.6 cm) radio continuum observations made toward the core of the HH~92 outflow with the Very Large Array in 2002-2003 and with the Expanded Very Large Array in 2011. We detect a group of three compact sources distributed in a region 2$$ in extension and discuss their nature. We conclude that one of the objects (VLA 1) is the exciting source of the giant outflow associated with HH~92. In the case of HH~34 we present new 43.3 GHz (7 mm) observations that reveal the presence of a structure associated with the exciting source and elongated perpendicular to the highly collimated optical jet in the region. We propose that this 7 mm source is a circumstellar disk with radius of $sim$80 AU and mass of $sim$0.21 $M_odot$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا