Do you want to publish a course? Click here

Nonnegative tensor factorization with frequency modulation cues for blind audio source separation

176   0   0.0 ( 0 )
 Added by Elliot Creager
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

We present Vibrato Nonnegative Tensor Factorization, an algorithm for single-channel unsupervised audio source separation with an application to separating instrumental or vocal sources with nonstationary pitch from music recordings. Our approach extends Nonnegative Matrix Factorization for audio modeling by including local estimates of frequency modulation as cues in the separation. This permits the modeling and unsupervised separation of vibrato or glissando musical sources, which is not possible with the basic matrix factorization formulation. The algorithm factorizes a sparse nonnegative tensor comprising the audio spectrogram and local frequency-slope-to-frequency ratios, which are estimated at each time-frequency bin using the Distributed Derivative Method. The use of local frequency modulations as separation cues is motivated by the principle of common fate partial grouping from Auditory Scene Analysis, which hypothesizes that each latent source in a mixture is characterized perceptually by coherent frequency and amplitude modulations shared by its component partials. We derive multiplicative factor updates by Minorization-Maximization, which guarantees convergence to a local optimum by iteration. We then compare our method to the baseline on two separation tasks: one considers synthetic vibrato notes, while the other considers vibrato string instrument recordings.

rate research

Read More

Multichannel blind audio source separation aims to recover the latent sources from their multichannel mixtures without supervised information. One state-of-the-art blind audio source separation method, named independent low-rank matrix analysis (ILRMA), unifies independent vector analysis (IVA) and nonnegative matrix factorization (NMF). However, the spectra matrix produced from NMF may not find a compact spectral basis. It may not guarantee the identifiability of each source as well. To address this problem, here we propose to enhance the identifiability of the source model by a minimum-volume prior distribution. We further regularize a multichannel NMF (MNMF) and ILRMA respectively with the minimum-volume regularizer. The proposed methods maximize the posterior distribution of the separated sources, which ensures the stability of the convergence. Experimental results demonstrate the effectiveness of the proposed methods compared with auxiliary independent vector analysis, MNMF, ILRMA and its extensions.
We address the determined audio source separation problem in the time-frequency domain. In independent deeply learned matrix analysis (IDLMA), it is assumed that the inter-frequency correlation of each source spectrum is zero, which is inappropriate for modeling nonstationary signals such as music signals. To account for the correlation between frequencies, independent positive semidefinite tensor analysis has been proposed. This unsupervised (blind) method, however, severely restrict the structure of frequency covariance matrices (FCMs) to reduce the number of model parameters. As an extension of these conventional approaches, we here propose a supervised method that models FCMs using deep neural networks (DNNs). It is difficult to directly infer FCMs using DNNs. Therefore, we also propose a new FCM model represented as a convex combination of a diagonal FCM and a rank-1 FCM. Our FCM model is flexible enough to not only consider inter-frequency correlation, but also capture the dynamics of time-varying FCMs of nonstationary signals. We infer the proposed FCMs using two DNNs: DNN for power spectrum estimation and DNN for time-domain signal estimation. An experimental result of separating music signals shows that the proposed method provides higher separation performance than IDLMA.
When a signal is recorded in an enclosed room, it typically gets affected by reverberation. This degradation represents a problem when dealing with audio signals, particularly in the field of speech signal processing, such as automatic speech recognition. Although there are some approaches to deal with this issue that are quite satisfactory under certain conditions, constructing a method that works well in a general context still poses a significant challenge. In this article, we propose a method based on convolutive nonnegative matrix factorization that mixes two penalizers in order to impose certain characteristics over the time-frequency components of the restored signal and the reverberant components. An algorithm for implementing the method is described and tested. Comparisons of the results against those obtained with state of the art methods are presented, showing significant improvement.
In this paper, we generalize a source generative model in a state-of-the-art blind source separation (BSS), independent low-rank matrix analysis (ILRMA). ILRMA is a unified method of frequency-domain independent component analysis and nonnegative matrix factorization and can provide better performance for audio BSS tasks. To further improve the performance and stability of the separation, we introduce an isotropic complex Students $t$-distribution as a source generative model, which includes the isotropic complex Gaussian distribution used in conventional ILRMA. Experiments are conducted using both music and speech BSS tasks, and the results show the validity of the proposed method.
Blind source separation, i.e. extraction of independent sources from a mixture, is an important problem for both artificial and natural signal processing. Here, we address a special case of this problem when sources (but not the mixing matrix) are known to be nonnegative, for example, due to the physical nature of the sources. We search for the solution to this problem that can be implemented using biologically plausible neural networks. Specifically, we consider the online setting where the dataset is streamed to a neural network. The novelty of our approach is that we formulate blind nonnegative source separation as a similarity matching problem and derive neural networks from the similarity matching objective. Importantly, synaptic weights in our networks are updated according to biologically plausible local learning rules.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا