Impact of Power System Partitioning on the Efficiency of Distributed Multi-Step Optimization


Abstract in English

Recent studies have shown that multi-step optimization based on Model Predictive Control (MPC) can effectively coordinate the increasing number of distributed renewable energy and storage resources in the power system. However, the computation complexity of MPC is usually high which limits its use in practical implementation. To improve the efficiency of MPC, in this paper, we apply a distributed optimization method to MPC. The approach consists of a partitioning technique based on spectral clustering that determines the best system partition and an improved Optimality Condition Decomposition method that solves the optimization problem in a distributed manner. Results of simulations conducted on the IEEE 14-bus and 118-bus systems show that the distributed MPC problem can be solved significantly faster by using a good partition of the system and this partition is applicable to multiple time steps without frequent changes.

Download