No Arabic abstract
We present results from the the first campaign of dedicated solar observations undertaken by the textit{Nuclear Spectroscopic Telescope ARray} ({em NuSTAR}) hard X-ray telescope. Designed as an astrophysics mission, {em NuSTAR} nonetheless has the capability of directly imaging the Sun at hard X-ray energies ($>$3~keV) with an increase in sensitivity of at least two magnitude compared to current non-focusing telescopes. In this paper we describe the scientific areas where textit{NuSTAR} will make major improvements on existing solar measurements. We report on the techniques used to observe the Sun with textit{NuSTAR}, their limitations and complications, and the procedures developed to optimize solar data quality derived from our experience with the initial solar observations. These first observations are briefly described, including the measurement of the Fe K-shell lines in a decaying X-class flare, hard X-ray emission from high in the solar corona, and full-disk hard X-ray images of the Sun.
We present the first results of a search for transient hard X-ray (HXR) emission in the quiet solar corona with the textit{Nuclear Spectroscopic Telescope Array} (textit{NuSTAR}) satellite. While textit{NuSTAR} was designed as an astrophysics mission, it can observe the Sun above 2~keV with unprecedented sensitivity due to its pioneering use of focusing optics. textit{NuSTAR} first observed quiet Sun regions on 2014 November 1, although out-of-view active regions contributed a notable amount of background in the form of single-bounce (unfocused) X-rays. We conducted a search for quiet Sun transient brightenings on time scales of 100 s and set upper limits on emission in two energy bands. We set 2.5--4~keV limits on brightenings with time scales of 100 s, expressed as the temperature T and emission measure EM of a thermal plasma. We also set 10--20~keV limits on brightenings with time scales of 30, 60, and 100 s, expressed as model-independent photon fluxes. The limits in both bands are well below previous HXR microflare detections, though not low enough to detect events of equivalent T and EM as quiet Sun brightenings seen in soft X-ray observations. We expect future observations during solar minimum to increase the textit{NuSTAR} sensitivity by over two orders of magnitude due to higher instrument livetime and reduced solar background.
We report on simultaneous observations of the local starburst system Arp 299 with NuSTAR and Chandra, which provides the first resolved images of this galaxy up to energies of ~ 45 keV. Fitting the 3-40 keV spectrum reveals a column density of $N_{rm H}$ ~ 4 x10^{24} cm^{-2}, characteristic of a Compton-thick AGN, and a 10-30 keV luminosity of 1.2x 10^{43} ergs s^{-1}. The hard X-rays detected by NuSTAR above 10 keV are centered on the western nucleus, Arp 299-B, which previous X-ray observations have shown to be the primary source of neutral Fe-K emission. Other X-ray sources, including Arp 299-A, the eastern nucleus which is also thought to harbor an AGN, as well as X-ray binaries, contribute $lesssim 10%$ to the 10-20 keV emission from the Arp 299 system. The lack of significant emission above 10 keV other than that attributed to Arp 299-B suggests that: a) any AGN in Arp 299-A must be heavily obscured ($N_{rm H}$ > 10^{24} cm^{-2}) or have a much lower luminosity than Arp 299-B and b) the extranuclear X-ray binaries have spectra that cut-off above ~10 keV. Such soft spectra are characteristic of ultraluminous X-ray (ULX) sources observed to date by NuSTAR.
We present results of the point spread function (PSF) calibration of the hard X-ray optics of the Nuclear Spectroscopic Telescope Array (NuSTAR). Immediately post-launch, NuSTAR has observed bright point sources such as Cyg X-1, Vela X-1, and Her X-1 for the PSF calibration. We use the point source observations taken at several off-axis angles together with a ray-trace model to characterize the in-orbit angular response, and find that the ray-trace model alone does not fit the observed event distributions and applying empirical corrections to the ray-trace model improves the fit significantly. We describe the corrections applied to the ray-trace model and show that the uncertainties in the enclosed energy fraction (EEF) of the new PSF model is < 3% for extraction apertures of R > 60 with no significant energy dependence. We also show that the PSF of the NuSTAR optics has been stable over a period of ~300 days during its in-orbit operation.
We present results from sensitive, multi-epoch NuSTAR observations of the late-type star-forming galaxy M83 (d=4.6 Mpc), which is the first investigation to spatially resolve the hard (E>10 keV) X-ray emission of this galaxy. The nuclear region and ~ 20 off-nuclear point sources, including a previously discovered ultraluminous X-ray (ULX) source, are detected in our NuSTAR observations. The X-ray hardnesses and luminosities of the majority of the point sources are consistent with hard X-ray sources resolved in the starburst galaxy NGC 253. We infer that the hard X-ray emission is most likely dominated by intermediate accretion state black hole binaries and neutron star low-mass X-ray binaries (Z-sources). We construct the X-ray binary luminosity function (XLF) in the NuSTAR band for an extragalactic environment for the first time. The M83 XLF has a steeper XLF than the X-ray binary XLF in NGC 253, consistent with previous measurements by Chandra at softer X-ray energies. The NuSTAR integrated galaxy spectrum of M83 drops quickly above 10 keV, which is also seen in the starburst galaxies NGC253, NGC 3310 and NGC 3256. The NuSTAR observations constrain any AGN to be either highly obscured or to have an extremely low luminosity of $_{sim}^<$10$^{38}$ erg/s (10-30 keV), implying it is emitting at a very low Eddington ratio. An X-ray point source consistent with the location of the nuclear star cluster with an X-ray luminosity of a few times 10$^{38}$ erg/s may be a low-luminosity AGN but is more consistent with being an X-ray binary.
We present the first observations of quiescent active regions (ARs) using NuSTAR, a focusing hard X-ray telescope capable of studying faint solar emission from high temperature and non-thermal sources. We analyze the first directly imaged and spectrally resolved X-rays above 2~keV from non-flaring ARs, observed near the west limb on 2014 November 1. The NuSTAR X-ray images match bright features seen in extreme ultraviolet and soft X-rays. The NuSTAR imaging spectroscopy is consistent with isothermal emission of temperatures $3.1-4.4$~MK and emission measures $1-8times 10^{46}$~cm$^{-3}$. We do not observe emission above 5~MK but our short effective exposure times restrict the spectral dynamic range. With few counts above 6~keV, we can place constraints on the presence of an additional hotter component between 5 and 12~MK of $sim 10^{46}$cm$^{-3}$ and $sim 10^{43}$ cm$^{-3}$, respectively, at least an order of magnitude stricter than previous limits. With longer duration observations and a weakening solar cycle (resulting in an increased livetime), future NuSTAR observations will have sensitivity to a wider range of temperatures as well as possible non-thermal emission.