Do you want to publish a course? Click here

Information Theoretically Aided Reinforcement Learning for Embodied Agents

95   0   0.0 ( 0 )
 Added by Guido F. Montufar
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

Reinforcement learning for embodied agents is a challenging problem. The accumulated reward to be optimized is often a very rugged function, and gradient methods are impaired by many local optimizers. We demonstrate, in an experimental setting, that incorporating an intrinsic reward can smoothen the optimization landscape while preserving the global optimizers of interest. We show that policy gradient optimization for locomotion in a complex morphology is significantly improved when supplementing the extrinsic reward by an intrinsic reward defined in terms of the mutual information of time consecutive sensor readings.



rate research

Read More

We introduce a new recurrent agent architecture and associated auxiliary losses which improve reinforcement learning in partially observable tasks requiring long-term memory. We employ a temporal hierarchy, using a slow-ticking recurrent core to allow information to flow more easily over long time spans, and three fast-ticking recurrent cores with connections designed to create an information asymmetry. The emph{reaction} core incorporates new observations with input from the slow core to produce the agents policy; the emph{perception} core accesses only short-term observations and informs the slow core; lastly, the emph{prediction} core accesses only long-term memory. An auxiliary loss regularizes policies drawn from all three cores against each other, enacting the prior that the policy should be expressible from either recent or long-term memory. We present the resulting emph{Perception-Prediction-Reaction} (PPR) agent and demonstrate its improved performance over a strong LSTM-agent baseline in DMLab-30, particularly in tasks requiring long-term memory. We further show significant improvements in Capture the Flag, an environment requiring agents to acquire a complicated mixture of skills over long time scales. In a series of ablation experiments, we probe the importance of each component of the PPR agent, establishing that the entire, novel combination is necessary for this intriguing result.
218 - Fei Xia , Amir Zamir , Zhi-Yang He 2018
Developing visual perception models for active agents and sensorimotor control are cumbersome to be done in the physical world, as existing algorithms are too slow to efficiently learn in real-time and robots are fragile and costly. This has given rise to learning-in-simulation which consequently casts a question on whether the results transfer to real-world. In this paper, we are concerned with the problem of developing real-world perception for active agents, propose Gibson Virtual Environment for this purpose, and showcase sample perceptual tasks learned therein. Gibson is based on virtualizing real spaces, rather than using artificially designed ones, and currently includes over 1400 floor spaces from 572 full buildings. The main characteristics of Gibson are: I. being from the real-world and reflecting its semantic complexity, II. having an internal synthesis mechanism, Goggles, enabling deploying the trained models in real-world without needing further domain adaptation, III. embodiment of agents and making them subject to constraints of physics and space.
Cognitive Psychology and related disciplines have identified several critical mechanisms that enable intelligent biological agents to learn to solve complex problems. There exists pressing evidence that the cognitive mechanisms that enable problem-solving skills in these species build on hierarchical mental representations. Among the most promising computational approaches to provide comparable learning-based problem-solving abilities for artificial agents and robots is hierarchical reinforcement learning. However, so far the existing computational approaches have not been able to equip artificial agents with problem-solving abilities that are comparable to intelligent animals, including human and non-human primates, crows, or octopuses. Here, we first survey the literature in Cognitive Psychology, and related disciplines, and find that many important mental mechanisms involve compositional abstraction, curiosity, and forward models. We then relate these insights with contemporary hierarchical reinforcement learning methods, and identify the key machine intelligence approaches that realise these mechanisms. As our main result, we show that all important cognitive mechanisms have been implemented independently in isolated computational architectures, and there is simply a lack of approaches that integrate them appropriately. We expect our results to guide the development of more sophisticated cognitively inspired hierarchical methods, so that future artificial agents achieve a problem-solving performance on the level of intelligent animals.
Skillful mobile operation in three-dimensional environments is a primary topic of study in Artificial Intelligence. The past two years have seen a surge of creative work on navigation. This creative output has produced a plethora of sometimes incompatible task definitions and evaluation protocols. To coordinate ongoing and future research in this area, we have convened a working group to study empirical methodology in navigation research. The present document summarizes the consensus recommendations of this working group. We discuss different problem statements and the role of generalization, present evaluation measures, and provide standard scenarios that can be used for benchmarking.
It is a widely accepted principle that software without tests has bugs. Testing reinforcement learning agents is especially difficult because of the stochastic nature of both agents and environments, the complexity of state-of-the-art models, and the sequential nature of their predictions. Recently, the Arcade Learning Environment (ALE) has become one of the most widely used benchmark suites for deep learning research, and state-of-the-art Reinforcement Learning (RL) agents have been shown to routinely equal or exceed human performance on many ALE tasks. Since ALE is based on emulation of original Atari games, the environment does not provide semantically meaningful representations of internal game state. This means that ALE has limited utility as an environment for supporting testing or model introspection. We propose ToyBox, a collection of reimplementations of these games that solves this critical problem and enables robust testing of RL agents.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا