Do you want to publish a course? Click here

Detecting dark matter waves with precision measurement tools

66   0   0.0 ( 0 )
 Added by Andrei Derevianko
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Virialized Ultra-Light Fields (VULFs) are viable cold dark matter candidates and include scalar and pseudo-scalar bosonic fields, such as axions and dilatons. Direct searches for VULFs rely on low-energy precision measurement tools. While the previous proposals have focused on detecting coherent oscillations of the VULF signals at the VULF Compton frequencies at individual devices, here I consider a network of such devices. VULFs are essentially dark matter {em waves} and as such they carry both temporal and spatial phase information. Thereby, the discovery reach can be improved by using networks of precision measurement tools. To formalize this idea, I derive a spatio-temporal two-point correlation function for the ultralight dark matter fields in the framework of the standard halo model. Due to VULFs being Gaussian random fields, the derived two-point correlation function fully determines $N$-point correlation functions. For a network of $N_{d}$ devices within the coherence length of the field, the sensitivity compared to a single device can be improved by a factor of $sqrt{N_{d}}$. Further, I derive a VULF dark matter signal profile for an individual device. The resulting line shape is strongly asymmetric due to the parabolic dispersion relation for massive non-relativistic bosons. I discuss the aliasing effect that extends the discovery reach to VULF frequencies higher than the experimental sampling rate. I present sensitivity estimates and develop a stochastic field SNR statistic. Finally, I consider an application of the developed formalism to atomic clocks and their networks.



rate research

Read More

LIGO and Virgo have initiated the era of gravitational-wave (GW) astronomy; but in order to fully explore GW frequency spectrum, we must turn our attention to innovative techniques for GW detection. One such approach is to use binary systems as dynamical GW detectors by studying the subtle perturbations to their orbits caused by impinging GWs. We present a powerful new formalism for calculating the orbital evolution of a generic binary coupled to a stochastic background of GWs, deriving from first principles a secularly-averaged Fokker-Planck equation which fully characterises the statistical evolution of all six of the binarys orbital elements. We also develop practical tools for numerically integrating this equation, and derive the necessary statistical formalism to search for GWs in observational data from binary pulsars and laser-ranging experiments.
We study the superheavy dark matter (DM) scenario in an extended $B-L$ model, where one generation of right-handed neutrino $ u_R$ is the DM candidate. If there is a new lighter sterile neutrino that co-annihilate with the DM candidate, then the annihilation rate is exponentially enhanced, allowing a DM mass much heavier than the Griest-Kamionkowski bound ($sim10^5$ GeV). We demonstrate that a DM mass $M_{ u_R}gtrsim10^{13}$ GeV can be achieved. Although beyond the scale of any traditional DM searching strategy, this scenario is testable via gravitational waves (GWs) emitted by the cosmic strings from the $U(1)_{B-L}$ breaking. Quantitative calculations show that the DM mass $mathcal{O}(10^9-10^{13}~{rm GeV})$ can be probed by future GW detectors.
With the discovery of gravitational waves (GW), attention has turned towards detecting counterparts to these sources. In discussions on counterpart signatures and multi-messenger follow-up strategies to GW detections, ultra-violet (UV) signatures have largely been neglected, due to UV facilities being limited to SWIFT, which lacks high-cadence UV survey capabilities. In this paper, we examine the UV signatures from merger models for the major GW sources, highlighting the need for further modelling, while presenting requirements and a design for an effective UV survey telescope. Using $u$-band models as an analogue, we find that a UV survey telescope requires a limiting magnitude of m$_{u}rm (AB)approx 24$ to fully complement the aLIGO range and sky localisation. We show that a network of small, balloon-based UV telescopes with a primary mirror diameter of 30~cm could be capable of covering the aLIGO detection distance from $sim$60--100% for BNS events and $sim$40% for BHNS events. The sensitivity of UV emission to initial conditions suggests that a UV survey telescope would provide a unique dataset, that can act as an effective diagnostic to discriminate between models.
We consider the prospects for multiple dark matter direct detection experiments to determine if the interactions of a dark matter candidate are isospin-violating. We focus on theoretically well-motivated examples of isospin-violating dark matter (IVDM), including models in which dark matter interactions with nuclei are mediated by a dark photon, a Z, or a squark. We determine that the best prospects for distinguishing IVDM from the isospin-invariant scenario arise in the cases of dark photon- or Z-mediated interactions, and that the ideal experimental scenario would consist of large exposure xenon- and neon-based detectors. If such models just evade current direct detection limits, then one could distinguish such models from the standard isospin-invariant case with two detectors with of order 100 ton-year exposure.
Liquid xenon time-projection chambers are the worlds most sensitive detectors for a wide range of dark matter candidates. We show that the statistical analysis of their data can be improved by replacing detector response Monte Carlo simulations with an equivalent deterministic calculation. This allows the use of high-dimensional undiscretized models, yielding up to $sim! 2$ times better discrimination of the dominant backgrounds. In turn, this could significantly extend the physics reach of upcoming experiments such as XENONnT and LZ, and bring forward a potential $5 sigma$ dark matter discovery by over a year.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا