Bose-Einstein condensates of ultracold atoms can be used to sense fluctuations of the magnetic field by means of transitions into untrapped hyperfine states. It has been shown recently that counting the outcoupled atoms can yield the power spectrum of the magnetic noise. We calculate the spectral resolution function which characterizes the condensate as a noise measurement device in this scheme. We use the description of the radio-frequency outcoupling scheme of an atom laser which takes into account the gravitational acceleration. Employing both an intuitive and the exact three-dimensional and fully quantum mechanical approach we derive the position-dependent spectral resolution function for condensates of different size and shape.
We discuss the contribution of the material type in metal wires to the electromagnetic fluctuations in magnetic microtraps close to the surface of an atom chip. We show that significant reduction of the magnetic noise can be achieved by replacing the pure noble metal wires with their dilute alloys. The alloy composition provides an additional degree of freedom which enables a controlled reduction of both magnetic noise and resistivity if the atom chip is cooled. In addition, we provide a careful re-analysis of the magnetically induced trap loss observed by Yu-Ju Lin et al. [Phys. Rev. Lett. 92, 050404 (2004)] and find good agreement with an improved theory.
We present the first direct measurement of the gravity-field curvature based on three conjugated atom interferometers. Three atomic clouds launched in the vertical direction are simultaneously interrogated by the same atom interferometry sequence and used to probe the gravity field at three equally spaced positions. The vertical component of the gravity-field curvature generated by nearby source masses is measured from the difference between adjacent gravity gradient values. Curvature measurements are of interest in geodesy studies and for the validation of gravitational models of the surrounding environment. The possibility of using such a scheme for a new determination of the Newtonian constant of gravity is also discussed.
The evolution of a quantum system is supposed to be impeded by measurement of an involved observable. This effect has been proven indistinguishable from the effect of dephasing the systems wave function, except in an individual quantum system. The coherent dynamics, on an optical E2 line, of a single trapped ion driven by light of negligible phase drift has been alternated with interrogations of the internal ion state. Retardation of the ions nutation, equivalent to the quantum Zeno effect, is demonstrated in the statistics of sequences of probe-light scattering on and off detections, the latter representing back-action-free measurement.
A quantum system being observed evolves more slowly. This `quantum Zeno effect is reviewed with respect to a previous attempt of demonstration, and to subsequent criticism of the significance of the findings. A recent experiment on an {it individual} cold trapped ion has been capable of revealing the micro-state of this quantum system, such that the effect of measurement is indeed discriminated from dephasing of the quantum state by either the meter or the environment.
We investigate the question whether Michelson type interferometry is possible if the role of the beam splitter is played by a spontaneous process. This question arises from an inspection of trajectories of atoms bouncing inelastically from an evanescent-wave (EW) mirror. Each final velocity can be reached via two possible paths, with a {it spontaneous} Raman transition occurring either during the ingoing or the outgoing part of the trajectory. At first sight, one might expect that the spontaneous character of the Raman transfer would destroy the coherence and thus the interference. We investigated this problem by numerically solving the Schrodinger equation and applying a Monte-Carlo wave-function approach. We find interference fringes in velocity space, even when random photon recoils are taken into account.