Do you want to publish a course? Click here

Competing Sudakov Veto Algorithms

235   0   0.0 ( 0 )
 Added by Rob Verheyen
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

We present a way to analyze the distribution produced by a Monte Carlo algorithm. We perform these analyses on sever



rate research

Read More

86 - Leif Lonnblad 2012
The Sudakov veto algorithm for generating emission and no-emission probabilities in parton showers is revisited and some reweighting techniques are suggested to improve statistics by oversampling in specific cases.
There has been recent interest in understanding the all loop structure of the subleading power soft and collinear limits, with the goal of achieving a systematic resummation of subleading power infrared logarithms. Most of this work has focused on subleading power corrections to soft gluon emission, whose form is strongly constrained by symmetries. In this paper we initiate a study of the all loop structure of soft fermion emission. In $mathcal{N}=1$ QCD we perform an operator based factorization and resummation of the associated infrared logarithms, and prove that they exponentiate into a Sudakov due to their relation to soft gluon emission. We verify this result through explicit calculation to $mathcal{O}(alpha_s^3)$. We show that in QCD, this simple Sudakov exponentiation is violated by endpoint contributions proportional to $(C_A-C_F)^n$ which contribute at leading logarithmic order. Combining our $mathcal{N}=1$ result and our calculation of the endpoint contributions to $mathcal{O}(alpha_s^3)$, we conjecture a result for the soft quark Sudakov in QCD, a new all orders function first appearing at subleading power, and give evidence for its universality. Our result, which is expressed in terms of combinations of cusp anomalous dimensions in different color representations, takes an intriguingly simple form and also exhibits interesting similarities to results for large-x logarithms in the off diagonal splitting functions.
Prediction is a well-studied machine learning task, and prediction algorithms are core ingredients in online products and services. Despite their centrality in the competition between online companies who offer prediction-based products, the strategic use of prediction algorithms remains unexplored. The goal of this paper is to examine strategic use of prediction algorithms. We introduce a novel game-theoretic setting that is based on the PAC learning framework, where each player (aka a prediction algorithm at competition) seeks to maximize the sum of points for which it produces an accurate prediction and the others do not. We show that algorithms aiming at generalization may wittingly miss-predict some points to perform better than others on expectation. We analyze the empirical game, i.e. the game induced on a given sample, prove that it always possesses a pure Nash equilibrium, and show that every better-response learning process converges. Moreover, our learning-theoretic analysis suggests that players can, with high probability, learn an approximate pure Nash equilibrium for the whole population using a small number of samples.
In high energy hadron-hadron collisions, dijet production with large rapidity separation proposed by Mueller and Navelet, is one of the most interesting processes which can help us to directly access the well-known Balitsky-Fadin-Kuraev-Lipatov evolution dynamics. The objective of this work is to study the Sudakov resummation of Mueller-Navelet jets. Through the one-loop calculation, Sudakov type logarithms are obtained for this process when the produced dijets are almost back-to-back. These results could play an important role in the phenomenological study of dijet correlations with large rapidity separation at the LHC.
We compute modifications to the jet spectrum in the presence of a dense medium. We show that in the large-$N_c$ approximation and at leading logarithmic accuracy the jet nuclear modification factor factorizes into a quenching factor associated to the total jet color charge and a Sudakov suppression factor which accounts for the energy loss of jet substructure fluctuations. This factor, called the jet collimator, implements the fact that subjets, that are not resolved by the medium, lose energy coherently as a single color charge, whereas resolved large angle fluctuations suffer more quenching. For comparison, we show that neglecting color coherence results in a stronger suppression of the jet nuclear modification factor.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا