Do you want to publish a course? Click here

Floating point numbers are real numbers

96   0   0.0 ( 0 )
 Added by Walter Mascarenhas
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

Floating point arithmetic allows us to use a finite machine, the digital computer, to reach conclusions about models based on continuous mathematics. In this article we work in the other direction, that is, we present examples in which continuous mathematics leads to sharp, simple and new results about the evaluation of sums, square roots and dot products in floating point arithmetic.



rate research

Read More

We investigate weighted floating bodies of polytopes. We show that the weighted volume depends on the complete flags of the polytope. This connection is obtained by introducing flag simplices, which translate between the metric and combinatorial structure. Our results are applied in spherical and hyperbolic space. This leads to new asymptotic results for polytopes in these spaces. We also provide explicit examples of spherical and hyperbolic convex bodies whose floating bodies behave completely different from any convex body in Euclidean space.
There are two incompatible Coq libraries that have a theory of the real numbers; the Coq standard library gives an axiomatic treatment of classical real numbers, while the CoRN library from Nijmegen defines constructively valid real numbers. Unfortunately, this means results about one structure cannot easily be used in the other structure. We present a way interfacing these two libraries by showing that their real number structures are isomorphic assuming the classical axioms already present in the standard library reals. This allows us to use OConnors decision procedure for solving ground inequalities present in CoRN to solve inequalities about the reals from the Coq standard library, and it allows theorems from the Coq standard library to apply to problem about the CoRN reals.
We associate a formal power series with integer coefficients to a positive real number, we interpret this series as a $q$-analogue of a real. The construction is based on the notion of $q$-deformed rational number introduced in arXiv:1812.00170. Extending the construction to negative real numbers, we obtain certain Laurent series.
The proofs that the real numbers are denumerable will be shown, i.e., that there exists one-to-one correspondence between the natural numbers $N$ and the real numbers $Re$. The general element of the sequence that contains all real numbers will be explicitly specified, and the first few elements of the sequence will be written. Remarks on the Cantors nondenumerability proofs of 1873 and 1891 that the real numbers are noncountable will be given.
104 - Martijn de Vries 2006
It was discovered some years ago that there exist non-integer real numbers $q>1$ for which only one sequence $(c_i)$ of integers $c_i in [0,q)$ satisfies the equality $sum_{i=1}^infty c_iq^{-i}=1$. The set of such univoque numbers has a rich topological structure, and its study revealed a number of unexpected connections with measure theory, fractals, ergodic theory and Diophantine approximation. In this paper we consider for each fixed $q>1$ the set $mathcal{U}_q$ of real numbers $x$ having a unique representation of the form $sum_{i=1}^infty c_iq^{-i}=x$ with integers $c_i$ belonging to $[0,q)$. We carry out a detailed topological study of these sets. For instance, we characterize their closures, and we determine those bases $q$ for which $mathcal{U}_q$ is closed or even a Cantor set. We also study the set $mathcal{U}_q$ consisting of all sequences $(c_i)$ of integers $c_i in [0,q)$ such that $sum_{i=1}^{infty} c_i q^{-i} in mathcal{U}_q$. We determine the numbers $r >1$ for which the map $q mapsto mathcal{U}_q$ (defined on $(1, infty)$) is constant in a neighborhood of $r$ and the numbers $q >1$ for which $mathcal{U}_q$ is a subshift or a subshift of finite type.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا