We consider non-linear wave type solutions with mass scale parameter and vahished canonical spin density operator in a pure SU(2) quantum chtomodynamics (QCD). A new stationary solution which can be treated as a system of static Wu-Yang monopole dressed in off-diagonal gluon field is proposed. A remarkable feature of such a solution is that it possesses a finite energy density everywhere. All considered non-linear wave type solutions have common features: presence of a mass scale parameter, non-vanishing projection of the color magnetic field along the propagation direction and zero spin density. The last property requires revision of the gauge invariant definition of the spin density operator which supposed to be massless vector field in the classical theory. We construct a gauge invariant definition of the classical gluon spin density which is unique and Lorentz frame independent.
We propose a method of constructing a gauge invariant canonical formulation for non-gauge classical theory which depends on a set of parameters. Requirement of closure for algebra of operators generating quantum gauge transformations leads to restrictions on parameters of the theory. This approach is then applied for illustration to bosonic string theory coupled to background tachyonic field. It is shown that within the proposed canonical formulation the known mass-shell condition for tachyon is produced.
The dimension two gauge invariant non-local operator $A_{min }^{2}$, obtained through the minimization of $int d^4x A^2$ along the gauge orbit, allows to introduce a non-local gauge invariant configuration $A^h_mu$ which can be employed to built up a class of Euclidean massive Yang-Mills models useful to investigate non-perturbative infrared effects of confining theories. A fully local setup for both $A_{min }^{2}$ and $A^{h}_mu$ can be achieved, resulting in a local and BRST invariant action which shares similarities with the Stueckelberg formalism. Though, unlike the case of the Stueckelberg action, the use of $A_{min }^{2}$ gives rise to an all orders renormalizable action, a feature which will be illustrated by means of a class of covariant gauge fixings which, as much as t Hoofts $R_zeta$-gauge of spontaneously broken gauge theories, provide a mass for the Stueckelberg field.
Lagrangian descriptions of irreducible and reducible integer higher-spin representations of the Poincare group subject to a Young tableaux $Y[hat{s}_1,hat{s}_2]$ with two columns are constructed within a metric-like formulation in a $d$-dimensional flat space-time on the basis of a BRST approach extending the results of [arXiv:1412.0200[hep-th]]. A Lorentz-invariant resolution of the BRST complex within both the constrained and unconstrained BRST formulations produces a gauge-invariant Lagrangian entirely in terms of the initial tensor field $Phi_{[mu]_{hat{s}_1}, [mu]_{hat{s}_2}}$ subject to $Y[hat{s}_1,hat{s}_2]$ with an additional tower of gauge parameters realizing the $(hat{s}_1-1)$-th stage of reducibility with a specific dependence on the value $(hat{s}_1-hat{s}_2)=0,1,...,hat{s}_1$. Minimal BRST--BV action is suggested, being proper solution to the master equation in the minimal sector and providing objects appropriate to construct interacting Lagrangian formulations with mixed-antisymmetric fields in a general framework.
A non-gauge dynamical system depending on parameters is considered. It is shown that these parameters can have such values that corresponding canonically quantized theory will be gauge invariant. The equations allowing to find these values of parameters are derived. The prescription under consideration is applied to obtaining the equation of motion for tachyon background field in closed bosonic string theory.
We address the issue of the renormalizability of the gauge-invariant non-local dimension-two operator $A^2_{rm min}$, whose minimization is defined along the gauge orbit. Despite its non-local character, we show that the operator $A^2_{rm min}$ can be cast in local form through the introduction of an auxiliary Stueckelberg field. The localization procedure gives rise to an unconventional kind of Stueckelberg-type action which turns out to be renormalizable to all orders of perturbation theory. In particular, as a consequence of its gauge invariance, the anomalous dimension of the operator $A^2_{rm min}$ turns out to be independent from the gauge parameter $alpha$ entering the gauge-fixing condition, being thus given by the anomalous dimension of the operator $A^2$ in the Landau gauge.