Fast simulation of Brownian dynamics in a crowded environment


Abstract in English

Brownian dynamics simulations are an increasingly popular tool for understanding spatially-distributed biochemical reaction systems. Recent improvements in our understanding of the cellular environment show that volume exclusion effects are fundamental to reaction networks inside cells. These systems are frequently studied by incorporating inert hard spheres (crowders) into three-dimensional Brownian dynamics simulations, however these methods are extremely slow owing to the sheer number of possible collisions between particles. Here we propose a rigorous crowder-free method to dramatically increase simulation speed for crowded biochemical reaction systems by eliminating the need to explicitly simulate the crowders. We consider both the case where the reactive particles are point particles, and where they themselves occupy a volume. We use simulations of simple chemical reaction networks to confirm that our simplification is just as accurate as the original algorithm, and that it corresponds to a large speed increase.

Download