Do you want to publish a course? Click here

Asymptotic Analysis of Objectives based on Fisher Information in Active Learning

91   0   0.0 ( 0 )
 Added by Jamshid Sourati
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

Obtaining labels can be costly and time-consuming. Active learning allows a learning algorithm to intelligently query samples to be labeled for efficient learning. Fisher information ratio (FIR) has been used as an objective for selecting queries in active learning. However, little is known about the theory behind the use of FIR for active learning. There is a gap between the underlying theory and the motivation of its usage in practice. In this paper, we attempt to fill this gap and provide a rigorous framework for analyzing existing FIR-based active learning methods. In particular, we show that FIR can be asymptotically viewed as an upper bound of the expected variance of the log-likelihood ratio. Additionally, our analysis suggests a unifying framework that not only enables us to make theoretical comparisons among the existing querying methods based on FIR, but also allows us to give insight into the development of new active learning approaches based on this objective.



rate research

Read More

This paper proposes an active learning-based Gaussian process (AL-GP) metamodelling method to estimate the cumulative as well as complementary cumulative distribution function (CDF/CCDF) for forward uncertainty quantification (UQ) problems. Within the field of UQ, previous studies focused on developing AL-GP approaches for reliability (rare event probability) analysis of expensive black-box solvers. A naive iteration of these algorithms with respect to different CDF/CCDF threshold values would yield a discretized CDF/CCDF. However, this approach inevitably leads to a trade-off between accuracy and computational efficiency since both depend (in opposite way) on the selected discretization. In this study, a specialized error measure and a learning function are developed such that the resulting AL-GP method is able to efficiently estimate the CDF/CCDF for a specified range of interest without an explicit dependency on discretization. Particularly, the proposed AL-GP method is able to simultaneously provide accurate CDF and CCDF estimation in their median-low probability regions. Three numerical examples are introduced to test and verify the proposed method.
The objective of active learning (AL) is to train classification models with less number of labeled instances by selecting only the most informative instances for labeling. The AL algorithms designed for other data types such as images and text do not perform well on graph-structured data. Although a few heuristics-based AL algorithms have been proposed for graphs, a principled approach is lacking. In this paper, we propose MetAL, an AL approach that selects unlabeled instances that directly improve the future performance of a classification model. For a semi-supervised learning problem, we formulate the AL task as a bilevel optimization problem. Based on recent work in meta-learning, we use the meta-gradients to approximate the impact of retraining the model with any unlabeled instance on the model performance. Using multiple graph datasets belonging to different domains, we demonstrate that MetAL efficiently outperforms existing state-of-the-art AL algorithms.
Stochastic approximation (SA) is a key method used in statistical learning. Recently, its non-asymptotic convergence analysis has been considered in many papers. However, most of the prior analyses are made under restrictive assumptions such as unbiased gradient estimates and convex objective function, which significantly limit their applications to sophisticated tasks such as online and reinforcement learning. These restrictions are all essentially relaxed in this work. In particular, we analyze a general SA scheme to minimize a non-convex, smooth objective function. We consider update procedure whose drift term depends on a state-dependent Markov chain and the mean field is not necessarily of gradient type, covering approximate second-order method and allowing asymptotic bias for the one-step updates. We illustrate these settings with the online EM algorithm and the policy-gradient method for average reward maximization in reinforcement learning.
Large-margin classifiers are popular methods for classification. We derive the asymptotic expression for the generalization error of a family of large-margin classifiers in the limit of both sample size $n$ and dimension $p$ going to $infty$ with fixed ratio $alpha=n/p$. This family covers a broad range of commonly used classifiers including support vector machine, distance weighted discrimination, and penalized logistic regression. Our result can be used to establish the phase transition boundary for the separability of two classes. We assume that the data are generated from a single multivariate Gaussian distribution with arbitrary covariance structure. We explore two special choices for the covariance matrix: spiked population model and two layer neural networks with random first layer weights. The method we used for deriving the closed-form expression is from statistical physics known as the replica method. Our asymptotic results match simulations already when $n,p$ are of the order of a few hundreds. For two layer neural networks, we reproduce the recently developed `double descent phenomenology for several classification models. We also discuss some statistical insights that can be drawn from these analysis.
Active learning is a powerful tool when labelling data is expensive, but it introduces a bias because the training data no longer follows the population distribution. We formalize this bias and investigate the situations in which it can be harmful and sometimes even helpful. We further introduce novel corrective weights to remove bias when doing so is beneficial. Through this, our work not only provides a useful mechanism that can improve the active learning approach, but also an explanation of the empirical successes of various existing approaches which ignore this bias. In particular, we show that this bias can be actively helpful when training overparameterized models -- like neural networks -- with relatively little data.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا