No Arabic abstract
Samarium hexaboride (SmB$_6$), a well-known Kondo insulator in which the insulating bulk arises from strong electron correlations, has recently attracted great attention owing to increasing evidence for its topological nature, thereby harboring protected surface states. However, corroborative spectroscopic evidence is still lacking, unlike in the weakly correlated counterparts, including Bi$_2$Se$_3$. Here we report results from planar tunneling that unveil the detailed spectroscopic properties of SmB$_6$. The tunneling conductance obtained on the (001) and (011) single crystal surfaces reveal linear density of states as expected for two and one Dirac cone(s), respectively. Quite remarkably, it is found that these topological states are not protected completely within the bulk hybridization gap. A phenomenological model of the tunneling process invoking interaction of the surface states with bulk excitations (spin excitons), as predicted by a recent theory, provides a consistent explanation for all of the observed features. Our spectroscopic study supports and explains the proposed picture of the incompletely protected surface states in this topological Kondo insulator SmB$_6$.
Several technical issues and challenges are identified and investigated for the planar tunneling spectroscopy of the topological Kondo insulator SmB$_6$. Contrasting behaviors of the tunnel junctions prepared in two different ways are analyzed and explained in detail. The conventional approach based on an AlO$_text{x}$ tunnel barrier results in unsatisfactory results due to the inter-diffusion between SmB$_6$ and deposited Al. On the contrary, plasma oxidation of SmB$_6$ crystals produces high-quality tunnel barriers on both (001) and (011) surfaces. Resultant conductance spectra are highly reproducible with clear signatures for the predicted surface Dirac fermions and the bulk hybridization gap as well. The surface states are identified to reside on two or one {it distinguishable} Dirac cone(s) on the (001) and (011) surface, respectively, in good agreement with the recent literature. However, their topological protection is found to be limited within the low energy region due to their inevitable interaction with the bulk excitations, called spin excitons, consistent with a recent theoretical prediction. Implications of our findings on other physical properties in SmB$_6$ and also other correlated topological materials are remarked.
We study the transport properties of the Kondo insulator SmB$_6$ with a specialized configuration designed to distinguish bulk-dominated conduction from surface-dominated conduction. We find that as the material is cooled below 4 K, it exhibits a crossover from bulk to surface conduction with a fully insulating bulk. We take the robustness and magnitude of the surface conductivity, as is manifest in the literature of SmB$_6$, to be strong evidence for the topological insulator metallic surface states recently predicted for this material.
Samarium hexaboride is a topological Kondo insulator, with metallic surface states manifesting from its insulating band structure. Since the insulating bulk itself is driven by strong correlations, both the bulk and surface host compelling magnetic and electronic phenomena. We employed X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) at the Sm M$_{4,5}$ edges to measure surface and bulk magnetic properties of Sm$^{2+}$ and Sm$^{3+}$ within SmB$_6$. We observed anti-alignment to the applied field of the Sm$^{3+}$ magnetic dipole moment below $T = 75$ K and of the total orbital moment of samarium below 30 K. The induced Sm$^{3+}$ moment at the cleaved surface at 8 K and 6 T implies 1.5% of the total Sm as magnetized Sm$^{3+}$. The field dependence of the Sm$^{3+}$ XMCD dichorism at 8 K is diamagnetic and approximately linear. The bulk magnetization at 2 K is however driven by Sm$^{2+}$ Van Vleck susceptibility as well as 1% paramagnetic impurities with $mu_{rm Eff} = 5.2(1)~mu_{rm B}$. This indicates diamagnetic Sm$^{3+}$ is compensated within the bulk. The XAS and XMCD spectra are weakly affected by Sm vacancies and carbon doping while XAS is strongly affected by polishing.
We used the inverted resistance method to extend the bulk resistivity of SmB$_{6}$ to a regime where the surface conduction overwhelms the bulk. Remarkably, the bulk resistivity shows an intrinsic thermally activated behavior that changes ten orders of magnitude, suggesting that it is an ideal insulator that is immune to disorder. Non-stoichiometrically-grown SmB$_{6}$ samples also show an almost identical thermally activated behavior. At low temperatures, however, these samples show a mysterious high bulk resistivity plateau, which may arise from extended defect conduction in a 3D TI.
The temperature and thickness dependencies of the in-plane anisotropic magnetoresistance (AMR) of SmB$_6$ thin films are reported. We find that the AMR changes sign from negative ($rho_{||}<rho_{perp}$) at high temperatures to positive ($rho_{||}>rho_{perp}$) at low temperatures. The temperature, T$_s$, at which this sign change occurs, decreases with increasing film thickness $t$ and T$_s$ vanishes for $t$ $>$ 30 nm. We interpret our results in the framework of a competition between two components: a negative bulk contribution and a positive surface AMR.