Do you want to publish a course? Click here

The weak neutral Fe fluorescence line and long-term X-ray evolution of the Compton-thick AGN in NGC 7674

65   0   0.0 ( 0 )
 Added by Poshak Gandhi
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present $NuSTAR$ X-ray observations of the active galactic nucleus (AGN) in NGC 7674. The source shows a flat X-ray spectrum, suggesting that it is obscured by Compton-thick gas columns. Based upon long-term flux dimming, previous work suggested the alternate possibility that the source is a recently switched-off AGN with the observed X-rays being the lagged echo from the torus. Our high-quality data show the source to be reflection-dominated in hard X-rays, but with a relatively weak neutral Fe K$alpha$ emission line (equivalent width [EW] of $approx$ 0.4 keV) and a strong Fe XXVI ionised line (EW $approx$ 0.2 keV). We construct an updated long-term X-ray light curve of NGC 7674 and find that the observed 2-10 keV flux has remained constant for the past $approx$ 20 years, following a high flux state probed by $Ginga$. Light travel time arguments constrain the minimum radius of the reflector to be $sim$ 3.2 pc under the switched-off AGN scenario, $approx$ 30 times larger than the expected dust sublimation radius, rendering this possibility unlikely. A patchy Compton-thick AGN (CTAGN) solution is plausible, requiring a minimum line-of-sight column density ($N_{rm H}$) of 3 $times$ 10$^{24}$ cm$^{-2}$ at present, and yields an intrinsic 2-10 keV luminosity of (3-5) $times$ 10$^{43}$ erg s$^{-1}$. Realistic uncertainties span the range of $approx$ (1-13) $times$ 10$^{43}$ erg s$^{-1}$. The source has one of the weakest fluorescence lines amongst {em bona fide} CTAGN, and is potentially a local analogue of bolometrically luminous systems showing complex neutral and ionised Fe emission. It exemplifies the difficulty of identification and proper characterisation of distant CTAGN based on the strength of the neutral Fe K$alpha$ line.



rate research

Read More

152 - Tahir Yaqoob 2012
We present an exhaustive methodology for fitting Compton-thick X-ray reprocessor models to obscured AGNs and for interpreting the results. We focus on the MYTORUS model but also utilize other models. We apply the techniques to Suzaku, BeppoSAX, and Swift BAT spectra of the Sy 2 galaxy NGC 4945, but the methods are applicable to other AGNs including Compton-thin sources. The models overcome a major restriction of disk-reflection models, namely the assumption of an infinite column density. Finite column-density models produce a richer variety of spectral shapes and characteristics, even for Compton-thin AGNs. Although NGC 4945 is one of the brightest AGNs above 10 keV, the models span nearly a factor of 3 in column density (~2 to 6 x 10^{24} cm^{-2}) and 2 orders of magnitude in the intrinsic 2-195 keV luminosity. Models in which the continuum above 10 keV is dominated by the direct (unscattered) continuum or Compton-scattered continuum give the highest and lowest intrinsic luminosities respectively. Variability properties favor solutions in which the unscattered continuum dominates above 10 keV. The data require that the Compton-scattered continuum and Fe Kalpha line emission come predominantly from the illuminated surfaces of the X-ray reprocessor, implying a clumpy medium with a global covering factor that is small enough that the Compton-scattered continuum does not dominate the spectrum above 10 keV. This can be identified with the ~30 pc region spatially resolved by Chandra. The implied intrinsic bolometric luminosity is close to, or greater than, the Eddington luminosity. However, a strongly beamed AGN embedded in a shell of Compton-thick (but clumpy) matter requires less fine-tuning of the covering factor. Beaming is consistent with recent radio and Fermi results. Such beamed Compton-thick AGNs would be preferentially selected in surveys over unbeamed Compton-thick AGNs.
249 - Weiwei Xu , Zhu Liu , Lijun Gou 2015
The cold disk/torus gas surrounding active galactic nuclei (AGN) emits fluorescent lines when irradiated by hard X-ray photons. The fluorescent lines of elements other than Fe and Ni are rarely detected due to their relative faintness. We report the detection of K$alpha$ lines of neutral Si, S, Ar, Ca, Cr, and Mn, along with the prominent Fe K$alpha$, Fe K$beta$, and Ni K$alpha$ lines, from the deep Chandra observation of the low-luminosity Compton-thick AGN in M51. The Si K$alpha$ line at 1.74 keV is detected at $sim3sigma$, the other fluorescent lines have a significance between 2 and 2.5 $sigma$, while the Cr line has a significance of $sim1.5sigma$. These faint fluorescent lines are made observable due to the heavy obscuration of the intrinsic spectrum of M51, which is revealed by Nustar observation above 10 keV. The hard X-ray continuum of M51 from Chandra and Nustar can be fitted with a power-law spectrum with an index of 1.8, reprocessed by a torus with an equatorial column density of $N_{rm H}sim7times10^{24}$ cm$^{-2}$ and an inclination angle of $74$ degrees. This confirms the Compton-thick nature of the nucleus of M51. The relative element abundances inferred from the fluxes of the fluorescent lines are similar to their solar values, except for Mn, which is about 10 times overabundant. It indicates that Mn is likely enhanced by the nuclear spallation of Fe.
171 - P. Gandhi 2014
We present X-ray observations of the active galactic nucleus (AGN) in NGC 4785. The source is a local Seyfert 2 which has not been studied so far in much detail. It was recently detected with high significance in the 15-60 keV band in the 66 month Swift/BAT all sky survey, but there have been no prior pointed X-ray observations of this object. With Suzaku, we clearly detect the source below 10 keV, and find it to have a flat continuum and prominent neutral iron fluorescence line with equivalent width >~1 keV. Fitting the broadband spectra with physical reflection models shows the source to be a bona fide Compton thick AGN with Nh of at least 2x10^{24} cm^{-2} and absorption-corrected 2-10 keV X-ray power L(2-10) ~ few times 10^{42} erg s^{-1}. Realistic uncertainties on L(2-10) computed from the joint confidence interval on the intrinsic power law continuum photon index and normalization are at least a factor of 10. The local bona fide Compton thick AGN population is highly heterogeneous in terms of WISE mid-infrared source colours, and the nucleus of NGC 4785 appears especially sub-dominant in the mid-infrared when comparing to other Compton thick AGN. Such sources would not be easily found using mid-infrared selection alone. The extent of host galaxy extinction to the nucleus is not clear, though NGC 4785 shows a complex core with a double bar and inner disk, adding to the list of known Compton thick AGN in barred host galaxies.
329 - G. Fabbiano , M. Elvis , A. Paggi 2017
We report the discovery of kpc-scale diffuse emission in both the hard continuum (3-6 keV) and in the Fe K alpha line in the Compton Thick (CT) Seyfert galaxy ESO428-G014. This extended hard component contains at least ~24% of the observed 3-8 keV emission, and follows the direction of the extended optical line emission (ionization cone) and radio jet. The extended hard component has ~0.5% of the intrinsic 2-10 keV luminosity within the bi-cones. A uniform scattering medium of density 1 cm-3 would produce this luminosity in a 1kpc path length in the bi-cones. Alternatively, higher column density molecular clouds in the disk of ESO428-G014 may be responsible for these components. The continuum may also be enhanced by the acceleration of charged particles in the radio jet. The steeper spectrum (Gamma ~1.7 +-0.4) of the hard continuum outside of the central 1.5 radius nuclear region suggests a contribution of scattered/fluorescent intrinsic Seyfert emission. Ultrafast nuclear outflows cannot explain the extended F K alpha emission. This discovery suggests that we may need to revise the picture at the base of our interpretation of CT AGN spectra.
75 - Jiren Liu 2016
X-ray fluorescent lines are unique features of the reflection spectrum of the torus when irradiated by the central AGN. Their intrinsic line width can be used to probe the line-emitting region. Previous studies have focused on the Fe Ka line at 6.4 keV, which is the most prominent fluorescent line. These studies, however, are limited by the spectral resolution of currently available instruments, the best of which is $sim1860$ km s$^{-1}$ afforded by the Chandra High-Energy Grating (HEG). The HEG spectral resolution is improved by a factor of 4 at 1.74 keV, where the Si Ka line is located. We measured the FWHM of the Si Ka line for Circinus, Mrk 3, and NGC 1068, which are $570pm240$, $730pm320$, and $320pm280$ km s$^{-1}$, respectively. They are $3-5$ times smaller than those measured with the Fe Ka line previously. It shows that the intrinsic widths of the Fe Ka line are most likely to be over-estimated. The measured widths of the Si Ka line put the line-emitting region outside the dust sublimation radius in these galaxies. It indicates that for Compton-thick AGN, the X-ray fluorescence material are likely to be the same as the dusty torus emitting in the infrared.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا