The Galois/monodromy group of a family of geometric problems or equations is a subtle invariant that encodes the structure of the solutions. Computing monodromy permutations using numerical algebraic geometry gives information about the group, but can only determine it when it is the full symmetric group. We give numerical methods to compute the Galois group and study it when it is not the full symmetric group. One algorithm computes generators while the other gives information on its structure as a permutation group. We illustrate these algorithms with examples using a Macaulay2 package we are developing that relies upon Bertini to perform monodromy computations.
In this paper, we study the actions of profinite groups on Cantor sets which arise from representations of Galois groups of certain fields of rational functions. Such representations are associated to polynomials, and they are called profinite iterated monodromy groups. We are interested in a topological invariant of such actions called the asymptotic discriminant. In particular, we give a complete classification by whether the asymptotic discriminant is stable or wild in the case when the polynomial generating the representation is quadratic. We also study different ways in which a wild asymptotic discriminant can arise.
We classify Schubert problems in the Grassmannian of 4-planes in 9-dimensional space by their Galois groups. Of the 31,806 essential Schubert problems in this Grassmannian, only 149 have Galois group that does not contain the alternating group. We identify the Galois groups of these 149---each is an imprimitive permutation group. These 149 fall into two families according to their geometry. This study suggests a possible classification of Schubert problems whose Galois group is not the full symmetric group, and it begins to establish the inverse Galois problem for Schubert calculus.
We show that the Galois group of any Schubert problem involving lines in projective space contains the alternating group. This constitutes the largest family of enumerative problems whose Galois groups have been largely determined. Using a criterion of Vakil and a special position argument due to Schubert, our result follows from a particular inequality among Kostka numbers of two-rowed tableaux. In most cases, a combinatorial injection proves the inequality. For the remaining cases, we use the Weyl integral formula to obtain an integral formula for these Kostka numbers. This rewrites the inequality as an integral, which we estimate to establish the inequality.
We compute the Galois groups for a certain class of polynomials over the the field of rational numbers that was introduced by S. Mori and study the monodromy of corresponding hyperelliptic jacobians.
In this paper we generalize results of P. Le Duff to genus n hyperelliptic curves. More precisely, let C/Q be a hyperelliptic genus n curve and let J(C) be the associated Jacobian variety. Assume that there exists a prime p such that J(C) has semistable reduction with toric dimension 1 at p. We provide an algorithm to compute a list of primes l (if they exist) such that the Galois representation attached to the l-torsion of J(C) is surjective onto the group GSp(2n, l). In particular we realize GSp(6, l) as a Galois group over Q for all primes l in [11, 500000].