Do you want to publish a course? Click here

Occupation times of intervals until last passage times for spectrally negative Levy processes

93   0   0.0 ( 0 )
 Added by Li Bo
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, we derive the joint Laplace transforms of occupation times until its last passage times as well as its positions. Motivated by Baurdoux [2], the last times before an independent exponential variable are studied. By applying dual arguments, explicit formulas are derived in terms of new analytical identities from Loeffen et al. [12].



rate research

Read More

Scale functions play a central role in the fluctuation theory of spectrally negative Levy processes and often appear in the context of martingale relations. These relations are often complicated to establish requiring excursion theory in favour of It^o calculus. The reason for the latter is that standard It^o calculus is only applicable to functions with a sufficient degree of smoothness and knowledge of the precise degree of smoothness of scale functions is seemingly incomplete. The aim of this article is to offer new results concerning properties of scale functions in relation to the smoothness of the underlying Levy measure. We place particular emphasis on spectrally negative Levy processes with a Gaussian component and processes of bounded variation. An additional motivation is the very intimate relation of scale functions to renewal functions of subordinators. The results obtained for scale functions have direct implications offering new results concerning the smoothness of such renewal functions for which there seems to be very little existing literature on this topic.
107 - Sean D Lawley 2019
The time it takes the fastest searcher out of $Ngg1$ searchers to find a target determines the timescale of many physical, chemical, and biological processes. This time is called an extreme first passage time (FPT) and is typically much faster than the FPT of a single searcher. Extreme FPTs of diffusion have been studied for decades, but little is known for other types of stochastic processes. In this paper, we study the distribution of extreme FPTs of piecewise deterministic Markov processes (PDMPs). PDMPs are a broad class of stochastic processes that evolve deterministically between random events. Using classical extreme value theory, we prove general theorems which yield the distribution and moments of extreme FPTs in the limit of many searchers based on the short time distribution of the FPT of a single searcher. We then apply these theorems to some canonical PDMPs, including run and tumble searchers in one, two, and three space dimensions. We discuss our results in the context of some biological systems and show how our approach accounts for an unphysical property of diffusion which can be problematic for extreme statistics.
The L2-approximation of occupation and local times of a symmetric $alpha$-stable L{e}vy process from high frequency discrete time observations is studied. The standard Riemann sum estimators are shown to be asymptotically efficient when 0 < $alpha$ $le$ 1, but only rate optimal for 1 < $alpha$ $le$ 2. For this, the exact convergence of the L2-approximation error is proven with explicit constants.
We prove a large deviation principle and give an expression for the rate function, for the last passage time in a Bernoulli environment. The model is exactly solvable and its invariant version satisfies a Burke-type property. Finally, we compute explicit limiting logarithmic moment generating functions for both the classical and the invariant models. The shape function of this model exhibits a flat edge in certain directions, and we also discuss the rate function and limiting log-moment generating functions in those directions.
In this paper we prove a duality relation between coalescence times and exit points in last-passage percolation models with exponential weights. As a consequence, we get lower bounds for coalescence times with scaling exponent 3/2, and we relate its distribution with variational problems involving the Brownian motion process and the Airy process.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا