Do you want to publish a course? Click here

Model distinguishability and inference robustness in mechanisms of cholera transmission and loss of immunity

66   0   0.0 ( 0 )
 Added by Marisa Eisenberg
 Publication date 2016
  fields Biology
and research's language is English




Ask ChatGPT about the research

Mathematical models of cholera and waterborne disease vary widely in their structures, in terms of transmission pathways, loss of immunity, and other features. These differences may yield different predictions and parameter estimates from the same data. Given the increasing use of models to inform public health decision-making, it is important to assess distinguishability (whether models can be distinguished based on fit to data) and inference robustness (whether model inferences are robust to realistic variations in model structure). We examined the effects of uncertainty in model structure in epidemic cholera, testing a range of models based on known features of cholera epidemiology. We fit to simulated epidemic and long-term data, as well as data from the 2006 Angola epidemic. We evaluated model distinguishability based on data fit, and whether parameter values and forecasts can accurately be inferred from incidence data. In general, all models were able to successfully fit to all data sets, even if misspecified. However, in the long-term data, the best model fits were achieved when the loss of immunity form matched those of the model that simulated the data. Two transmission and reporting parameters were accurately estimated across all models, while the remaining showed broad variation across the different models and data sets. Forecasting efforts were not successful early, but once the epidemic peak had been achieved, most models showed similar accuracy. Our results suggest that we are unlikely to be able to infer mechanistic details from epidemic case data alone, underscoring the need for broader data collection. Nonetheless, with sufficient data, conclusions from forecasting and some parameter estimates were robust to variations in the model structure, and comparative modeling can help determine how variations in model structure affect conclusions drawn from models and data.



rate research

Read More

Multiple epidemiological models have been proposed to predict the spread of Ebola in West Africa. These models include consideration of counter-measures meant to slow and, eventually, stop the spread of the disease. Here, we examine one component of Ebola dynamics that is of growing concern -- the transmission of Ebola from the dead to the living. We do so by applying the toolkit of mathematical epidemiology to analyze the consequences of post-death transmission. We show that underlying disease parameters cannot be inferred with confidence from early-stage incidence data (that is, they are not identifiable) because different parameter combinations can produce virtually the same epidemic trajectory. Despite this identifiability problem, we find robustly that inferences that dont account for post-death transmission tend to underestimate the basic reproductive number -- thus, given the observed rate of epidemic growth, larger amounts of post-death transmission imply larger reproductive numbers. From a control perspective, we explain how improvements in reducing post-death transmission of Ebola may reduce the overall epidemic spread and scope substantially. Increased attention to the proportion of post-death transmission has the potential to aid both in projecting the course of the epidemic and in evaluating a portfolio of control strategies.
We model and calculate the fraction of infected population necessary to reach herd immunity, taking into account the heterogeneity in infectiousness and susceptibility, as well as the correlation between those two parameters. We show that these cause the effective reproduction number to decrease more rapidly, and consequently have a drastic effect on the estimate of the necessary percentage of the population that has to contract the disease for herd immunity to be reached. We quantify the difference between the size of the infected population when the effective reproduction number decreases below 1 vs. the ultimate fraction of population that had contracted the disease. This sheds light on an important distinction between herd immunity and the end of the disease and highlights the importance of limiting the spread of the disease even if we plan to naturally reach herd immunity. We analyze the effect of various lock-down scenarios on the resulting final fraction of infected population. We discuss implications to COVID-19 and other pandemics and compare our theoretical results to population-based simulations. We consider the dependence of the disease spread on the architecture of the infectiousness graph and analyze different graph architectures and the limitations of the graph models.
The contact structure of a population plays an important role in transmission of infection. Many ``structured models capture aspects of the contact structure through an underlying network or a mixing matrix. An important observation in such models, is that once a fraction $1-1/mathcal{R}_0$ has been infected, the residual susceptible population can no longer sustain an epidemic. A recent observation of some structured models is that this threshold can be crossed with a smaller fraction of infected individuals, because the disease acts like a targeted vaccine, preferentially immunizing higher-risk individuals who play a greater role in transmission. Therefore, a limited ``first wave may leave behind a residual population that cannot support a second wave once interventions are lifted. In this paper, we systematically analyse a number of mean-field models for networks and other structured populations to address issues relevant to the Covid-19 pandemic. In particular, we consider herd-immunity under several scenarios. We confirm that, in networks with high degree heterogeneity, the first wave confers herd-immunity with significantly fewer infections than equivalent models with lower degree heterogeneity. However, if modelling the intervention as a change in the contact network, then this effect might become more subtle. Indeed, modifying the structure can shield highly connected nodes from becoming infected during the first wave and make the second wave more substantial. We confirm this finding by using an age-structured compartmental model parameterised with real data and comparing lockdown periods implemented either as a global scaling of the mixing matrix or age-specific structural changes. We find that results regarding herd immunity levels are strongly dependent on the model, the duration of lockdown and how lockdown is implemented.
Between pandemics, the influenza virus exhibits periods of incremental evolution via a process known as antigenic drift. This process gives rise to a sequence of strains of the pathogen that are continuously replaced by newer strains, preventing a build up of immunity in the host population. In this paper, a parsimonious epidemic model is defined that attempts to capture the dynamics of evolving strains within a host population. The `evolving strains epidemic model has many properties that lie in-between the Susceptible-Infected-Susceptible and the Susceptible-Infected-Removed epidemic models, due to the fact that individuals can only be infected by each strain once, but remain susceptible to reinfection by newly emerged strains. Coupling results are used to identify key properties, such as the time to extinction. A range of reproduction numbers are explored to characterize the model, including a novel quasi-stationary reproduction number that can be used to describe the re-emergence of the pathogen into a population with `average levels of strain immunity, analogous to the beginning of the winter peak in influenza. Finally the quasi-stationary distribution of the evolving strains model is explored via simulation.
128 - R. Jayatilaka , R. Patel , M. Brar 2021
Disease transmission is studied through disciplines like epidemiology, applied mathematics, and statistics. Mathematical simulation models for transmission have implications in solving public and personal health challenges. The SIR model uses a compartmental approach including dynamic and nonlinear behavior of transmission through three factors: susceptible, infected, and removed (recovered and deceased) individuals. Using the Lambert W Function, we propose a framework to study solutions of the SIR model. This demonstrates the applications of COVID-19 transmission data to model the spread of a real-world disease. Different models of disease including the SIR, SIRm and SEIR model are compared with respect to their ability to predict disease spread. Physical distancing impacts and personal protection equipment use will be discussed in relevance to the COVID-19 spread.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا