No Arabic abstract
We constrain the internal dynamics of a stack of 10 clusters from the GCLASS survey at 0.87<z<1.34. We determine the stack cluster mass profile M(r) using the MAMPOSSt algorithm of Mamon et al., the velocity anisotropy profile beta(r) from the inversion of the Jeans equation, and the pseudo-phase-space density profiles Q(r) and Qr(r), obtained from the ratio between the mass density profile and the third power of the (total and, respectively, radial) velocity dispersion profiles of cluster galaxies. Several M(r) models are statistically acceptable for the stack cluster (Burkert, Einasto, Hernquist, NFW). The total mass distribution has a concentration c=r200/r-2=4.0-0.6+1.0, in agreement with theoretical expectations, and is less concentrated than the cluster stellar-mass distribution. The stack cluster beta(r) is similar for passive and star-forming galaxies and indicates isotropic galaxy orbits near the cluster center and increasingly radially elongated with increasing cluster-centric distance. Q(r) and Qr(r) are almost power-law relations with slopes similar to those predicted from numerical simulations of dark matter halos. Combined with results obtained for lower-z clusters we determine the dynamical evolution of galaxy clusters, and compare it with theoretical predictions. We discuss possible physical mechanisms responsible for the differential evolution of total and stellar mass concentrations, and of passive and star-forming galaxy orbits [abridged].
The assembly of galaxies can be described by the distribution of their star formation as a function of cosmic time. Thanks to the WFC3 grism on HST it is now possible to measure this beyond the local Universe. Here we present the spatial distribution of Halpha emission for a sample of 54 strongly star-forming galaxies at z~1 in the 3D-HST Treasury survey. By stacking the Halpha emission we find that star formation occurred in approximately exponential distributions at z~1, with median Sersic index of n=1.0+-0.2. The stacks are elongated with median axis ratios of b/a=0.58+-0.09 in Halpha, consistent with (possibly thick) disks at random orientation angles. Keck spectra obtained for a subset of eight of the galaxies show clear evidence for rotation, with inclination-corrected velocities of 90 to 330 km/s. The most straightforward interpretation of our results is that star formation in strongly star-forming galaxies at z~1 generally occurred in disks. The disks appear to be scaled-up
We present first results from the 3D-HST program, a near-IR spectroscopic survey performed with the Wide Field Camera 3 on the Hubble Space Telescope. We have used 3D-HST spectra to measure redshifts and Halpha equivalent widths for a stellar mass-limited sample of 34 galaxies at 1<z<1.5 with M(stellar)>10^11 M(sun) in the COSMOS, GOODS, and AEGIS fields. We find that a substantial fraction of massive galaxies at this epoch are forming stars at a high rate: the fraction of galaxies with Halpha equivalent widths >10 A is 59%, compared to 10% among SDSS galaxies of similar masses at z=0.1. Galaxies with weak Halpha emission show absorption lines typical of 2-4 Gyr old stellar populations. The structural parameters of the galaxies, derived from the associated WFC3 F140W imaging data, correlate with the presence of Halpha: quiescent galaxies are compact with high Sersic index and high inferred velocity dispersion, whereas star-forming galaxies are typically large two-armed spiral galaxies, with low Sersic index. Some of these star forming galaxies might be progenitors of the most massive S0 and Sa galaxies. Our results challenge the idea that galaxies at fixed mass form a homogeneous population with small scatter in their properties. Instead we find that massive galaxies form a highly diverse population at z>1, in marked contrast to the local Universe.
We present CARMA 30 GHz Sunyaev-Zeldovich (SZ) observations of five high-redshift ($z gtrsim 1$), infrared-selected galaxy clusters discovered as part of the all-sky Massive and Distant Clusters of WISE Survey (MaDCoWS). The SZ decrements measured toward these clusters demonstrate that the MaDCoWS selection is discovering evolved, massive galaxy clusters with hot intracluster gas. Using the SZ scaling relation calibrated with South Pole Telescope clusters at similar masses and redshifts, we find these MaDCoWS clusters have masses in the range $M_{200} approx 2-6 times 10^{14}$ $M_odot$. Three of these are among the most massive clusters found to date at $zgtrsim 1$, demonstrating that MaDCoWS is sensitive to the most massive clusters to at least $z = 1.3$. The added depth of the AllWISE data release will allow all-sky infrared cluster detection to $z approx 1.5$ and beyond.
We present 279 galaxy cluster candidates at $z > 1.3$ selected from the 94 deg$^{2}$ Spitzer South Pole Telescope Deep Field (SSDF) survey. We use a simple algorithm to select candidate high-redshift clusters of galaxies based on Spitzer/IRAC mid-infrared data combined with shallow all-sky optical data. We identify distant cluster candidates in SSDF adopting an overdensity threshold that results in a high purity (80%) cluster sample based on tests in the Spitzer Deep, Wide-Field Survey of the Bootes field. Our simple algorithm detects all three $1.4 < z leq 1.75$ X-ray detected clusters in the Bootes field. The uniqueness of the SSDF survey resides not just in its area, one of the largest contiguous extragalactic fields observed with Spitzer, but also in its deep, multi-wavelength coverage by the South Pole Telescope (SPT), Herschel/SPIRE and XMM-Newton. This rich dataset will allow direct or stacked measurements of Sunyaev-Zeldovich effect decrements or X-ray masses for many of the SSDF clusters presented here, and enable systematic study of the most distant clusters on an unprecedented scale. We measure the angular correlation function of our sample and find that these candidates show strong clustering. Employing the COSMOS/UltraVista photometric catalog in order to infer the redshift distribution of our cluster selection, we find that these clusters have a comoving number density $n_c = (0.7^{+6.3}_{-0.6}) times 10^{-7} h^{3} mathrm{Mpc}^{-3}$ and a spatial clustering correlation scale length $r_0 = (32 pm 7) h^{-1} rm{Mpc}$. Assuming our sample is comprised of dark matter halos above a characteristic minimum mass, $M_{{rm min}}$, we derive that at $z=1.5$ these clusters reside in halos larger than $M_{{rm min}} = 1.5^{+0.9}_{-0.7} times 10^{14} h^{-1} M_{odot}$. (abridged)