Do you want to publish a course? Click here

Arbitrary n-Qubit State Transfer Implemented by Coherent Control and Simplest Switchable Local Noise

60   0   0.0 ( 0 )
 Added by Ville Bergholm
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study reachable sets of open n-qubit quantum systems, whose coherent parts are under full unitary control, by adding as a further degree of incoherent control switchable Markovian noise on a single qubit. In particular, adding bang-bang control of amplitude damping noise (non-unital) allows the dynamic system to act transitively on the entire set of density operators. Thus one can transform any initial quantum state into any desired target state. Adding switchable bit-flip noise (unital) instead suffices to get all states majorised by the initial state. Our open-loop optimal control package DYNAMO is extended by incoherent control to exploit these unprecedented reachable sets in experiments. We propose implementation by a GMon, a superconducting device with fast tunable coupling to an open transmission line, and illustrate how open-loop control with noise switching achieves all state transfers without measurement-based closed-loop feedback and resettable ancilla.



rate research

Read More

We explore reachable sets of open $n$-qubit quantum systems, the coherent parts of which are under full unitary control and that have just one qubit whose Markovian noise amplitude can be modulated in time such as to provide an additional degree of incoherent control. In particular, adding bang-bang control of amplitude damping noise (non-unital) allows the dynamic system to act transitively on the entire set of density operators. This means one can transform any initial quantum state into any desired target state. Adding switchable bit-flip noise (unital), on the other hand, suffices to explore all states majorised by the initial state. We have extended our open-loop optimal control algorithm (DYNAMO package) by such degrees of incoherent control so that these unprecedented reachable sets can systematically be exploited in experiments. As illustrated for an ion trap experimental setting, open-loop control with noise switching can accomplish all state transfers one can get by the more complicated measurement-based closed-loop feedback schemes.
Short pulses from mode-locked lasers can produce background-free atomic fluorescence by allowing temporal separation of the prompt incidental scatter from the subsequent atomic emission. We use this to improve quantum state detection of optical-frequency and electron-shelved trapped ion qubits by more than 2 orders of magnitude. For direct detection of qubits defined on atomic hyperfine structure, however, the large bandwidth of short pulses is greater than the hyperfine splitting, and repeated excitation is not qubit state selective. Here, we show that the state resolution needed for projective quantum measurement of hyperfine qubits can be recovered by applying techniques from coherent control to the orbiting valence electron of the queried ion. We demonstrate electron wavepacket interference to allow readout of the original qubit state using broadband pulses, even in the presence of large amounts of background laser scatter.
249 - H. Dong , X.F. Liu , H.C. Fu 2007
This is the second one in our series of papers on indirect quantum control assisted by quantum accessor. In this paper we propose and study a new class of indirect quantum control(IDQC) scheme based on the initial states preparation of the accessor. In the present scheme, after the initial state of the accessor is properly prepared, the system is controlled by repeatedly switching on and off the interaction between the system and the accessor. This is different from the protocol of our first paper, where we manipulate the interaction between the controlled system and the accessor. We prove the controllability of the controlled system for the proposed indirect control scheme. Furthermore, we give an example with two coupled spins qubits to illustrate the scheme, the concrete control process and the controllability.
We combine numerical optimization techniques [Uskov et al., Phys. Rev. A 79, 042326 (2009)] with symmetries of the Weyl chamber to obtain optimal implementations of generic linear-optical KLM-type two-qubit entangling gates. We find that while any two-qubit controlled-U gate, including CNOT and CS, can be implemented using only two ancilla resources with success probability S > 0.05, a generic SU(4) operation requires three unentangled ancilla photons, with success S > 0.0063. Specifically, we obtain a maximal success probability close to 0.0072 for the B gate. We show that single-shot implementation of a generic SU(4) gate offers more than an order of magnitude increase in the success probability and two-fold reduction in overhead ancilla resources compared to standard triple-CNOT and double-B gate decompositions.
We study the problem of remote one-qubit mixed state creation using a pure initial state of two-qubit sender and spin-1/2 chain as a connecting line. We express the parameters of creatable states in terms of transition amplitudes. We show that the creation of complete receivers state-space can be achieved only in the chain engineered for the one-qubit perfect state transfer (PST) (for instance, in the fully engineered Ekert chain), the chain can be arbitrarily long in this case. As for the homogeneous chain, the creatable receivers state region decreases quickly with the chain length. Both homogeneous chains and chains engineered for PST can be used for the purpose of selective state creation, when only the restricted part of the whole receivers state space is of interest. Among the parameters of the receivers state, the eigenvalue is the most hard creatable one and therefore deserves the special study. Regarding the homogeneous spin chain, an arbitrary eigenvalue can be created only if the chain is of no more then 34 nodes. Alternating chain allows us to increase this length up to 68 nodes.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا