Do you want to publish a course? Click here

Spinors, Lagrangians and rank 2 Higgs bundles

65   0   0.0 ( 0 )
 Added by Nigel Hitchin
 Publication date 2016
  fields
and research's language is English
 Authors Nigel Hitchin




Ask ChatGPT about the research

The paper considers the Dirac operator on a Riemann surface coupled to a symplectic holomorphic vector bundle W. Each spinor in the null-space generates through the moment map a Higgs bundle, and varying W one obtains a holomorphic Lagrangian subvariety in the moduli space of Higgs bundles. Applying this to the irreducible symplectic representations of SL(2) we obtain Lagrangian submanifolds of the rank 2 moduli space which link up with m-period points on the Prym variety of the spectral curve as well as Brill-Noether loci on the moduli space of semistable bundles. The case of genus 2 is investigated in some detail.



rate research

Read More

Let $X$ be a compact connected Riemann surface of genus at least two. Let $M_H(r,d)$ denote the moduli space of semistable Higgs bundles on $X$ of rank $r$ and degree $d$. We prove that the compact complex Bohr-Sommerfeld Lagrangians of $M_H(r,d)$ are precisely the irreducible components of the nilpotent cone in $M_H(r,d)$. This generalizes to Higgs $G$-bundles and also to the parabolic Higgs bundles.
The moduli space of stable vector bundles on a Riemann surface is smooth when the rank and degree are coprime, and is diffeomorphic to the space of unitary connections of central constant curvature. A classic result of Newstead and Atiyah-Bott asserts that its rational cohomology ring is generated by the universal classes, that is, by the Kunneth components of the Chern classes of the universal bundle. This paper studies the larger, non-compact moduli space of Higgs bundles, as introduced by Hitchin and Simpson, with values in the canonical bundle K. This is diffeomorphic to the space of all connections of central constant curvature, whether unitary or not. The main result of the paper is that, in the rank 2 case, the rational cohomology ring of this space is again generated by universal classes. The spaces of Higgs bundles with values in K(n) for n > 0 turn out to be essential to the story. Indeed, we show that their direct limit has the homotopy type of the classifying space of the gauge group, and hence has cohomology generated by universal classes. A companion paper treats the problem of finding relations between these generators in the rank 2 case.
The moduli space of stable bundles of rank 2 and degree 1 on a Riemann surface has rational cohomology generated by the so-called universal classes. The work of Baranovsky, King-Newstead, Siebert-Tian and Zagier provided a complete set of relations between these classes, expressed in terms of a recursion in the genus. This paper accomplishes the same thing for the non-compact moduli spaces of Higgs bundles, in the sense of Hitchin and Simpson. There are many more independent relations than for stable bundles, but in a sense the answer is simpler, since the formulas are completely explicit, not recursive. The results of Kirwan on equivariant cohomology for holomorphic circle actions are of key importance. Together, Parts I and II describe the cohomology rings of spaces of rank 2 Higgs bundles at essentially the same level of detail as is known for stable bundles.
We prove formulas for the rational Chow motives of moduli spaces of semistable vector bundles and Higgs bundles of rank 3 and coprime degree on a smooth projective curve. Our approach involves identifying criteria to lift identities in (a completion of) the Grothendieck group of effective Chow motives to isomorphisms in the category of Chow motives. For the Higgs moduli space, we use motivic Bialynicki-Birula decompositions associated to a scaling action with variation of stability and wall-crossing for moduli spaces of rank 2 pairs, which occur in the fixed locus of this action.
We present a new family of monads whose cohomology is a stable rank two vector bundle on $PP$. We also study the irreducibility and smoothness together with a geometrical description of some of these families. Such facts are used to prove that the moduli space of stable rank two vector bundles of zero first Chern class and second Chern class equal to 5 has exactly three irreducible components.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا